

An Roinn Talmhaíochta, Bia agus Mara Department of Agriculture, Food and the Marine

Determining pesticide levels in honeybee products

Dr Darren O'Connell

Pollination

Increased Colony Losses

Environmental Changes

Environmental Changes

Pathogen Infestations

Environmental Changes

Pathogen Infestations

Pesticide Exposure

Honey bees face compound stressors

How Neonicotinoids Can Kill Bees

The Science Behind the Role These Insecticides Play in Harming Bees

2nd Edition; Revised & Expanded

Jennifer Hopwood, Almee Code, Mace Vaughan, David Biddinger, Matthew Shepherd, Scott Hoffman Black, Eric Lee-Mäder, and Celeste Mazzacano

Pesticide impacts

How Neonicotinoids Can Kill Bees

The Science Behind the Role These Insecticides Play in Harming Bees

2nd Edition; Revised & Expanded

Jennifer Hopwood, Aimee Code, Mace Vaughan, David Biddinger, Matthew Shepherd, Scott Hoffman Black, Eric Lee-Mäder, and Celeste Mazzacano

REVIEW article

Front. Insect Sci., 25 January 2022 Sec. Insect Health and Pathology Volume 1 - 2021 | https://doi.org/10.3389/finsc.2021.808335 This article is part of the Research Topic Effects of Multiple Stressors on Insect Health View all 3 Articles >

Interaction of Insecticides and Fungicides in Bees

Antonia Schuhmann^{1*}, 🔍

Anna Paulina Schmid¹,

Sarah Manzer¹,

Janna Schulte^{1,2} and

Ricarda Scheiner¹

REVIEW article

Front. Insect Sci., 25 January 2022 Sec. Insect Health and Pathology Volume 1 - 2021 | https://doi.org/10.3389/finsc.2021.808335 This article is part of the Research Topic Effects of Multiple Stressors on Insect Health View all 3 Articles >

Interaction of Insecticides and Fungicides in Bees

Antonia Schuhmann^{1*},

Anna Paulina Schmid¹,

Sarah Manzer¹,

Janna Schulte^{1,2} and

International Journal for Parasitology: Parasites and Wildlife

Volume 18, August 2022, Pages 232-243

Do pesticide and pathogen interactions drive wild bee declines?

<u>Lars Straub</u> ª 오 函, <u>Verena Strobl</u> ª, <u>Orlando Yañez</u> ª, <u>Matthias Albrecht ^b, Mark J.F. Brown </u>°, <u>Peter Neumann</u> ª ^d

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Pesticide mixtures detected in crop and non-target wild plant pollen and nectar

Elena Zioga ^{a,*}, Blánaid White ^b, Jane C. Stout ^a

^a Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
^b School of Chemical Sciences, DCU Water Institute, Dublin City University, Dublin 9, Ireland

HIGHLIGHTS

GRAPHICAL ABSTRACT

- Pesticide residues in plant pollen and nectar may pose a hazard for pollinators.
- We evaluated the pesticide residues in a crop and a wild plant species in Ireland.
- Most detections were in fields with no recent application of the compounds detected.
- Azoxystrobin, boscalid and clothianidin was the most common compound mixture.
- Clothianidin was detected in both plant species several years after its application.

 Map the distribution of all pesticides in honey bee colonies across the island of Ireland

- Map the distribution of all pesticides in honey bee colonies across the island of Ireland
- Relate pesticide prevalence to colony loss

- Map the distribution of all pesticides in honey bee colonies across the island of Ireland
- Relate pesticide prevalence to colony loss

Sampling

In depth sampling of pollen and honey by a network of beekeepers

National Apiculture Programme Sampling

Pesticide detection process

Screening for 360 pesticides

Honey Bee Exposure to Pesticides: A Four-Year Nationwide Study

by 😩 Nancy Ostiguy ^{1,*} 🖂, 😩 Frank A. Drummond ², 🙁, 😩 Kate Aronstein ³, 😩 Brian Eitzer ⁴, A James D. Ellis ⁵, 😩 Marla Spivak ⁶ and ² Walter S. Sheppard ⁷

Pesticide prevalence fairly low

Science of The Total Environment

Volume 745, 25 November 2020, 141036

Pesticide and veterinary drug residues in 4.00% Belgian beeswax: Occurrence, toxicity, and risk 3.50% to honey bees 3.00% 2.50% Noëmie El Agrebi ^a, Kirsten Traynor ^b, Olivier Wilmart ^c, Simone Tosi ^d, Laurent Leinartz ^e, Ellen Danneels ^f, Dirk C. de Graaf ^{f g}, Claude Saegerman ^a 🝳 🖂 2.00% 1.50% 1.00% 0.50% MCPA Nyclobutonii 0.00% roparoite cyprodinil Boscalid Azoxystrobin Fluvalinate Tau Fludioxonil pyraclostrobin 2,4.0

Results – Propargite distribution • Pollen • Honey

 Relating beekeeper colony loss data from sampled apiaries to pathogen load

• Relating beekeeper colony loss data from sampled apiaries to pathogen load

 Proportion of hives surviving over-winter ~ environmental factors + pesticide_01 + pesticide_02 + ... pesticide_n

• Relating beekeeper colony loss data from sampled apiaries to pathogen load

 Proportion of hives surviving over-winter ~ environmental factors + pesticide_01 + pesticide_02 + . . . pesticide_n

 No significant impact on colony survival by pesticides

 Look at how exposure is impacted by land use - new National Landcover Map

- Look at how exposure is impacted by land use - new National Landcover Map
- Assess the interaction with gut microbiota

- Look at how exposure is impacted by land use - new National Landcover Map
- Assess the interaction with gut microbiota
- Investigate cryptic inputs

LULC variable	دور المعالم الم	
	Predicted no. of pesticides	Risk
Artificial surfaces	7.262	High
Cultivated land	6.108	High
Exposed surfaces	5.306	High
Waterbodies	5.101	Neutral
Heath & Bracken	4.747	Neutral
Peatland	3.829	Low
Grassland	2.521	Low

The honey bee gut microbial community

Fitness changes

Current Opinion in Insect Science Volume 26, April 2018, Pages 97-104

The role of the gut microbiome in health and disease of adult honey bee workers

<u>Kasie Raymann ¹, Nancy A Moran</u> 🖂

Could pesticides disrupt the microbiome?

Ere / Ireland 159 apiaries sampled

Screening of wax sources

Screening of wax sources

Assessment of exposure risk

• Pesticides prevalence generally low

- Pesticides prevalence generally low
- Only a small number of apiaries had more than one pesticide important as pesticide synergies can be dangerous

- Pesticides prevalence generally low
- Only a small number of apiaries had more than one pesticide important as pesticide synergies can be dangerous
- No neonicotinoids

- Pesticides prevalence generally low
- Only a small number of apiaries had more than one pesticide important as pesticide synergies can be dangerous
- No neonicotinoids
- No relationship with colony loss

- Pesticides prevalence generally low
- Only a small number of apiaries had more than one pesticide – important as pesticide synergies can be dangerous
- No neonicotinoids
- No relationship with colony loss
- Next steps;

- Pesticides prevalence generally low
- Only a small number of apiaries had more than one pesticid – important as pesticide synergies can be dangerous
- No neonicotinoids
- No relationship with colony loss
- Next steps;
 - Mapping land cover risk

- Pesticides prevalence generally low
- Only a small number of apiaries had more than one pesticid
 important as pesticide synergies can be dangerous
- No neonicotinoids
- No relationship with colony loss
- Next steps;
 - Mapping land cover risk
 - Finer measures of honey bee response

- Pesticides prevalence generally low
- Only a small number of apiaries had more than one pesticid – important as pesticide synergies can be dangerous
- No neonicotinoids
- No relationship with colony loss
- Next steps;
 - Mapping land cover risk
 - Finer measures of honey bee response
 - Assessing sources of exposure

Acknowledgements

An Roinn Talmhaíochta, Bia agus Mara Department of Agriculture, Food and the Marine

IRIAF

Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal Castilla-La Mancha

 $\mathbf{A}_{\mathbf{GRICULTURE}}$ and $\mathbf{F}_{\mathbf{OOD}}$ $\mathbf{D}_{\mathbf{EVELOPMENT}}$ $\mathbf{A}_{\mathbf{UTHORITY}}$

Acknowledgements

