GIBBERELLIC ACID

Collaborative Study

Small scale collaborative study for the

Determination of Gibberellic acid in Gibberellic acid TC by

HPLC

Report to CIPAC by CHIPAC

Method Developed by

Zhejiang Qianjiang Biochemical Co., Ltd.

May 2023

1. Participants

Small Scale Collaborative Study for the determination of gibberellic acid TC by HPLC was organized by CHIPAC, and participated by 4 labs. All the 4 laboratories provided their results, which are presented in the following sections.

Index	Contact	Lab	Address
			Guizhou Jiandee
		Cuizbau liananda Taabaalaay	Technology Co., LTD
Lab 1	Zhiyu He		Address: Baijin road
			No.3491, Baiyun district,
			Guiyang, P. R. China
			No.9, Shidai Road,
Lah 2	lionvin 7hu	Zhejiang Qianjiang	Haichang Sub-district,
Lau Z		Biochemistry Co., LTD	Haining City, Jiaxing City,
			Zhejiang, P.R.China
		Institute of Quality Safety and	198 Shiqiao Road,
Lah 3	Jianzhong	Nutrition of Agricultural	Shangcheng District,
Lab 3	Yu	Products, Zhejiang Academy of	Hangzhou City, Zhejiang
		Agricultural Sciences	Province, China
		Hunan Chamical Pasaarch	No. 550, Changsha Avenue,
Loh 1			Lituo street, Yuhua District,
	Lu i luariy		Changsha City, Hunan
			Province, China

2. Active Ingredient: General Information

ISO common name: Gibberellic acid CAS No.: 77-06-5 Structure:

Molecular mass: 346.4 Empirical formula: C₁₉H₂₂O₆ Activity: Plant growth regulation

3. Samples

Three test samples and gibberellic acid analytical standard were sent to the participants:

- (1) Gibberellic acid tech. sample (TC-1)
- (2) Gibberellic acid tech. sample (TC-2)
- (3) Gibberellic acid tech. sample (TC-3)
- (4) Gibberellic acid, reference standard (purity 994 g/kg)

All participants sent back their results in time.

4. Method

4.1 Scope

The determination of gibberellic acid active ingredient content was assayed in technical material (TC).

4.2 Outline of method

Gibberellic acid is determined by high performance liquid chromatography on a reversed phase column (C18) with UV detection at 210 nm and external standardization.

4.3 Procedure for the collaborative trial

The samples were analyzed on two different days, each day involving duplicate injections of duplicate weights. Both test and reference solutions were freshly prepared on each day.

5. Analytical conditions

Lab	Instrument	Column	Flow Rate (ml/min)	Column Temp. (℃)	Wavelength (nm)	Injection Volume (µl)	Mobile phase (v/v)
1	Agilent 1260	Agilent ZORBAX SB-C ₁₈ (150×4.6	1.0	33	210	5	methanol: 0.05% phosphoric acid aqueous
		mm, 5 µm)					solution, 33:67
2	SHIMADZU LC-20AT	Agilent ZORBAX SB-C ₁₈ (150×4.6 mm, 5 µm)	1.0	33	210	5	methanol: 0.05% phosphoric acid aqueous solution, 33:67
3	Agilent 1260	Waters XTERRA MS C ₁₈ (150×4.6 mm, 5 µm)	1.0	33	210	5	methanol: 0.05% phosphoric acid aqueous solution, 33:67
4	Agilent 1260	Agilent ZORBAX SB-C ₁₈	1.0	33	210	5	methanol: 0.05% phosphoric

(150×4.6			acid aqueous
mm, 5 µm)		solution, 33:67

6. Deviations and Remarks

because it was found that samples could not be completely dissolved by methanol and mobile phase, Lab 4 add ultrasonic steps in the preparation process of samples solution to ensure samples dissolution which was deemed not to affect the analytical results significantly.

7. Evaluation and Discussion

7.1 Evaluation of the Quality of Data and Chromatograms

The data obtained from each laboratory was visually reviewed and no significant deviation regarding the chromatography which might affect the analysis results was founded.

Therefore, all data sets were included within the statistical assessment. The report below contains statistical evaluations with the full set of 4 participating laboratories.

7.2 Determination of gibberellic acid

The statistical evaluation of the data was accomplished following the "Guidelines for CIPAC Collaborative Study Procedures for Assessment of Performance of Analytical Methods", according to DIN ISO 5725. The testing for outliers/stragglers of the laboratory mean values were not performed.

In Tables 1-6 and Figures 1-3, respectively, the full set of all laboratories (4 participants) are reported. A comparison of the RSD_R of this collaborative study with the unmodified Horwitz equation showed that the reproducibility relative standard deviation (RSD_R) is lower than the Horwitz value for all the products (see in Table 4-6). The Horwitz Ratio (HorRat) for each sample was found within the desired range (0.3-1.0). Due to the universal applicability of the method, this collaborative trial is acceptable.

8. Conclusions

From the results shown above, the method can be considered applicable for the determination of gibberellic acid contents in TC. CHIPAC propose that a full scale collaborative trial might be conducted.

	Day1	(g/kg)	Day2	(g/kg)	Avorago		Standard	
	1	2	1	2	Average Vi	Yi ²	Deviation	Si ²
	1	2	1	2	TI		Si	
Lab 1	905.1	904.0	904.2	907.5	905.20	819387.0400	1.6062	2.5800
Lab 2	917.2	913.1	911.3	916.2	914.45	836218.8025	2.7307	7.4567
Lab 3	911.0	910.4	912.4	915.1	912.23	832154.4506	2.0918	4.3758
Lab 4	911.5	905.9	907.3	904.9	907.40	823374.7600	2.9052	8.4400

Table 1 Results of analysis of gibberellic acid content in the TC1

Table 2 Results of analysis of gibberellic acid content in the TC2

	Day1(g/kg)		Day2(g/kg)		Avorago		Standard	
	1	2	1	2	Vi	Yi ²	Deviation	Si ²
	I	2		2	TI		Si	
Lab 1	909.5	903.8	906.3	902.8	905.60	820111.3600	2.9878	8.9267
Lab 2	916.9	920.0	917.4	916.1	917.60	841989.7600	1.6872	2.8467
Lab 3	913.1	913.1	914.4	914.4	913.75	834939.0625	0.7506	0.5633
Lab 4	912.4	912.6	911.2	910.1	911.58	830968.9806	1.1615	1.3492

Table 3 Results of analysis of gibberellic acid content in the TC3

	Day1	(g/kg)	Day2	(g/kg)	Avorago		Standard	
	1	2	1	2	Vi	Yi ²	Deviation	Si ²
		2		2	11		Si	
Lab 1	910.8	910.1	907.6	911.2	909.93	827963.5056	1.6153	2.6092
Lab 2	918.9	920.5	915.9	916.9	918.05	842815.8025	2.0551	4.2233
Lab 3	911.9	912.6	915.8	916.5	914.20	835761.6400	2.2876	5.2333
Lab 4	901.8	908.0	907.9	901.7	904.85	818753.5225	3.5800	12.8167

Figure 1. Graphical presentation of TC1 data

Figure 3. Graphical presentation of TC3 data

S₁=Sum Yi	3639.28			
S ₂ =Sum Yi ²		3311135.0531		
S ₃ =Sum Si ²		22.8525		
No. Lab P		4		
No. Determination n		4		
Average Y=S ₁ /P		909.82		
Sr ² =S ₃ /P	5.7131	Sr	2.3902	
$S_{L}^{2} = [(P^{*}S_{2}-S_{1}^{2})/P(P-1)]-S_{r}^{2}/n$	16.7123	SL	4.0881	
$S_{R}^{2}=S_{r}^{2}+S_{L}^{2}$	22.4254	S _R	4.7355	
Repeatability r=2.8*S _r		6.6926		
Reproducibility R=2.8*S _R	13.2595			

Table 4	Statistics	of the	roculte	of TC1
Taple 4	Statistics	or the	results	

Relative Standard Deviation of Repeatability RSD _r =S _r *100/Y	0.2627
Relative Standard Deviation of Reproducibility RSD _R =S _R *100/Y	0.5205
Horwitz RSD _R (Hor)=2^[1-0.5*log(Y/1000)]	2.0287
HorRat	0.3628

		0040 50			
S ₁ =Sum Yi	3648.53				
S ₂ =Sum Yi ²	3328009.1631				
S ₃ =Sum Si ²		13.6858			
No. Lab P		4			
No. Determination n		4			
Average Y=S ₁ /P		912.13			
Sr ² =S ₃ /P	3.4215	Sr	1.8497		
$S_L^2 = [(P^*S_2 - S_1^2)/P(P-1)] - S_r^2/n$	24.3094	S∟	4.9305		
$S_{R}^{2}=S_{r}^{2}+S_{L}^{2}$	27.7308	S _R	5.2660		
Repeatability r=2.8*Sr		5.1792			
Reproducibility R=2.8*S _R		14.7448			
Relative Standard Deviation of	0 2028				
Repeatability RSD _r =S _r *100/Y	0.2020				
Relative Standard Deviation of	0.5773				
Reproducibility RSD _R =S _R *100/Y					
Horwitz	2.0279				
RSD _R (Hor)=2^[1-0.5*log(Y/1000)]					
HorRat	0.4026				

Table 5 Statistics of the results of TC2

Table 6 Statistics of the results of TC3

S₁=Sum Yi	3647.03				
S ₂ =Sum Yi ²	:	3325294.4706			
S ₃ =Sum Si ²	24.8825				
No. Lab P		4			
No. Determination n	4				
Average Y=S ₁ /P		911.76			
Sr ² =S ₃ /P	6.2206	Sr	2.4941		
$S_{L}^{2} = [(P^{*}S_{2}-S_{1}^{2})/P(P-1)]-S_{r}^{2}/n$	30.6558	S∟	5.5368		
$S_{R}^{2}=S_{r}^{2}+S_{L}^{2}$	36.8765	S _R	6.0726		
Repeatability r=2.8*S _r		6.9835			

Reproducibility R=2.8*S _R	17.0033
Relative Standard Deviation of Repeatability RSD _r =Sr*100/Y	0.2736
Relative Standard Deviation of Reproducibility RSD _R =S _R *100/Y	0.6660
Horwitz RSD _R (Hor)=2^[1-0.5*log(Y/1000)]	2.0280
HorRat	0.4645

Figure 4. HPLC chromatogram of gibberellic acid standard (Lab 1)

Figure 5. HPLC chromatogram of gibberellic acid standard (Lab 2)

Figure 6. HPLC chromatogram of gibberellic acid standard (Lab 3)

Figure 7. HPLC chromatogram of gibberellic acid standard (Lab 4)

Figure 8. HPLC chromatogram of gibberellic acid TC (Lab 1)

Figure 9. HPLC chromatogram of gibberellic acid TC (Lab 2)

Figure 10. HPLC chromatogram of gibberellic acid TC (Lab 3)

Figure 11. HPLC chromatogram of gibberellic acid TC (Lab 4)