TEMBOTRIONE Collaborative Study

Small scale collaborative study for the Determination of Tembotrione in Tembotrione TC, SC and OD by HPLC

Report to CIPAC by CHIPAC

Method Developed by Jiangxi Tianyu Chemical Co., Ltd

May 2023

1. Participants

Small Scale Collaborative Study for the determination of tembotrione TC, SC and OD by HPLC was organized by CHIPAC and participated by 4 labs. All of the 4 laboratories provided their results, which are presented in the following sections.

Index	Contact	Lab	Address
Lab 1	Shenglin Li	Jiangxi Tianyu Chemical Co., Ltd	Yanhua Road, Xingan Salt Chemical Industrial Park, Xingan County, Jiangxi Province, P. R. China
Lab 2	Mirror Chen	GreenTech Laboratory Co., Ltd.	Building 2, No. 650, Shunqing Road, Songjiang, Shanghai, China
Lab 3	Yan Liu	National Chemical Low Carbon Science and Technology Co., Ltd	No.3 Kangpu Road, Zhoushi Town, Kunshan City, Jiangsu Province, China
Lab 4	Haiyan Jiang	Pilarcise Laboratory Co., Ltd.	Building .1500 Hang-Tang Road,Feng Xian District,Shanghai, CHINA

2. Active Ingredient: General Information

ISO common name: Tembotrione
CAS No.: 335104-84-2
Structure:

Molecular mass: 440.8
Empirical formula: $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{CIF}_{3} \mathrm{O}_{6} \mathrm{~S}$
Activity: herbicide

3. Samples

Six test samples and tembotrione analytical standard were sent to the participants:
(1) Tembotrione tech. sample (TC1)
(2) Tembotrione tech. sample (TC2)
(3) Tembotrione tech. sample (SC1)
(4) Tembotrione tech. sample (SC2)
(5) Tembotrione tech. sample (OD1)
(6) Tembotrione tech. sample (OD2)
(7) Tembotrione, reference standard (purity $986 \mathrm{~g} / \mathrm{kg}$)

All participants sent back their results in time.

4. Method

4.1 Scope

The determination of tembotrione active ingredient content was assayed in technical material (TC), SC and OD formulation.

4.2 Outline of method

Tembotrione is determined by high performance liquid chromatography on a reversed phase column (C18) with UV detection at 284 nm and external standardization.

4.3 Procedure for the collaborative trial

The samples were analyzed on two different days, each day involving duplicate injections of duplicate weights. Both test and reference solutions were freshly prepared on each day.

5. Analytical conditions

Lab	Instrumen t	Column	Flow Rate (mL/min)	Colum n Temp. ($\left.{ }^{\circ} \mathrm{C}\right)$	Wavele ngth (nm)	Injectio n Volume ($\mu \mathrm{L}$)	Mobile phase (v/v)
1	SHIMADZ U LC-20AT	$\begin{aligned} & \text { ZORBAX } \\ & \text { SB-C18 } \\ & (250 \times 4.6 \\ & \mathrm{mm}, 5 \mu \mathrm{~m}) \\ & \hline \end{aligned}$	1.0	30	284	5	acetonitrile: phosphoric acid aqueous solution, 60:40
2	$\begin{aligned} & \text { SHIMADZ } \\ & \text { U,LC-2050 } \\ & \text { C 3D } \end{aligned}$	$\begin{aligned} & \hline \text { ZORBAX } \\ & \text { SB-C } 18 \\ & (250 \times 4.6 \\ & \mathrm{mm}, 5 \mu \mathrm{~m}) \end{aligned}$	1.0	30	284	5	acetonitrile: phosphoric acid aqueous solution, 60:40
3	Waters 2695	Waters Xbridge C_{18} (250×4.6 $\mathrm{mm}, 5 \mu \mathrm{~m})$	1.0	30	284	5	acetonitrile: phosphoric acid aqueous solution, 60:40
4	Agilent 1260	Agilent Eclipse Plus C_{18} (250×4.6 $\mathrm{mm}, 5 \mu \mathrm{~m})$	1.0	30	284	5	acetonitrile: phosphoric acid aqueous solution, 60:40

6. Deviations and Remarks

There is no deviation in the experiments between the four laboratories, and no remarks need to be made.

7. Evaluation and Discussion

7.1 Evaluation of the Quality of Data and Chromatograms

The data obtained from each laboratory was visually reviewed and no significant deviation regarding the chromatography which might affect the analysis results was founded.

Therefore all data sets were included within the statistical assessment. The report below contains statistical evaluations with the full set of 4 participating laboratories.

7.2 Determination of tembotrione

The statistical evaluation of the data was accomplished following the "Guidelines for
CIPAC Collaborative Study Procedures for Assessment of Performance of Analytical Methods", according to DIN ISO 5725. The testing for outliers/stragglers of the laboratory mean values were not performed.

In Tables 1-12 and Figures 1-6, respectively, the full set of all laboratories (4 participants) are reported. A comparison of the $R_{S D} D_{R}$ of this collaborative study with the unmodified Horwitz equation showed that the reproducibility relative standard deviation ($R \mathrm{RS}_{\mathrm{R}}$) is lower the Horwitz value for all the products (see in Table 7-12). The Horwitz Ratio (HorRat) for each sample was found lower than 1.0. Due to the universal applicability of the method, this collaborative trial is acceptable.

8. Conclusions

From the results shown above, the method can be considered applicable for the determination of tembotrione contents in TC, SC and OD. CHIPAC propose that a full scale collaborative trial might be conducted.

Table 1 Results of analysis of tembotrione content in the TC1

	Day1(g/kg)		Day2(g/kg)		Average Yi	$Y i^{2}$	Standard Deviation S_{i}	Si^{2}
	1	2	1	2				
Lab 1	963.3	964.0	963.3	960.3	962.73	926839.4256	1.6500	2.7225
Lab 2	955.4	954.7	955.0	953.4	954.63	911308.8906	0.8655	0.7492
Lab 3	959.5	962.6	959.4	961.6	960.78	923088.6006	1.5840	2.5092
Lab 4	962.9	963.2	963.0	963.6	963.18	927706.0806	0.3096	0.0958

Table 2 Results of analysis of tembotrione content in the TC2

	Day1(g/kg)		Day2(g/kg)		Average Yi	Yi^{2}	Standard Deviation Si	Si^{2}
	1	2	1	2				
Lab 1	952.9	952.3	954.4	952.7	953.08	908351.9556	0.9179	0.8425
Lab 2	957.7	961.5	961.3	962.4	960.73	922992.5256	2.0726	4.2958
Lab 3	953.8	954.6	955.6	954.2	954.55	911165.7025	0.7724	0.5967
Lab 4	966.1	967.2	967.8	967.1	967.05	935185.7025	0.7047	0.4967

Table 3 Results of analysis of tembotrione content in the SC1

	Day1(g/kg)		Day2(g/kg)		Average Yi	$Y i^{2}$	Standard Deviation S_{i}	$S i^{2}$
	1	2	1	2				
Lab 1	345.7	345.5	344.1	345.3	345.15	119128.5225	0.7188	0.5167
Lab 2	343.9	343.2	343.3	343.6	343.50	117992.2500	0.3162	0.1000
Lab 3	347.4	347.4	350.7	347.2	348.18	121225.8306	1.6860	2.8425
Lab 4	349.3	349.2	349.2	348.8	349.13	121888.2656	0.2217	0.0492

Table 4 Results of analysis of tembotrione content in the SC2

	Day1(g/kg)		Day2(g/kg)		Average Yi	Yi^{2}	Standard Deviation S_{i}	Si ${ }^{2}$
	1	2	1	2				
Lab 1	344.7	345.0	343.6	344.8	344.53	118697.4756	0.6292	0.3958
Lab 2	343.1	345.1	342.6	345.1	343.98	118318.8006	1.3150	1.7292
Lab 3	355.8	354.5	346.1	345.8	350.55	122885.3025	5.3395	28.5100
Lab 4	349.1	349.4	348.4	348.7	348.90	121731.21	0.4397	0.1933

Table 5 Results of analysis of tembotrione content in the OD1

	Day1(g/kg)		Day2(g/kg)				Standard Deviation Si^{2}	

Table 6 Results of analysis of tembotrione content in the OD2

	Day1(g/kg)		Day2(g/kg)		Average Yi	$Y i^{2}$	Standard Deviation Si	Si^{2}
	1	2	1	2				
Lab 1	85.4	85.8	85.0	85.6	85.45	7301.7025	0.3416	0.1167
Lab 2	83.8	84.8	84.3	83.6	84.13	7077.0156	0.5377	0.2892
Lab 3	84.4	84.5	84.1	84.5	84.38	7119.1406	0.1893	0.0358
Lab 4	87.3	87.2	87.3	87.1	87.23	7608.2006	0.0957	0.0092

Figure 1. Graphical presentation of TC1 data

Figure 2. Graphical presentation of TC2 data

Figure 3. Graphical presentation of SC1 data

Figure 4. Graphical presentation of SC2 data

Figure 5. Graphical presentation of OD1 data

Figure 6. Graphical presentation of OD2 data

Table 7 Statistics of the results of TC1

$\mathrm{S}_{1}=$ Sum Yi	3841.3000			
$\mathrm{~S}_{2}=$ Sum Yi 2	3688942.9975			
$\mathrm{~S}_{3}=$ Sum Si 2	6.0767			
No. Lab P	4			
No. Determination n	4			
Average $\mathrm{Y}=\mathrm{S}_{1} / \mathrm{P}$		960.3250		
$\mathrm{Sr}^{2}=\mathrm{S}_{3} / \mathrm{P}$	1.5192	$\mathrm{~S}_{\mathrm{r}}$	1.2325	
$\mathrm{SL}^{2}=\left[\left(\mathrm{P}^{*} \mathrm{~S}_{2}-\mathrm{S}_{1}{ }^{2}\right) / \mathrm{P}(\mathrm{P}-1)\right]-\mathrm{S}_{\mathrm{r}}{ }^{2} / \mathrm{n}$	15.1452	$\mathrm{~S}_{\mathrm{L}}$	3.8917	
$\mathrm{~S}_{\mathrm{R}}{ }^{2} \mathrm{~S}_{\mathrm{r}}{ }^{2}+\mathrm{S}_{\mathrm{L}}{ }^{2}$	16.6644	$\mathrm{~S}_{\mathrm{R}}$	4.0822	
Repeatability r=2.8* S_{r}	3.4511			

Reproducibility $\mathrm{R}=2.8^{\star} \mathrm{S}_{\mathrm{R}}$	11.4302
Relative Standard Deviation of Repeatability $\mathrm{RSD}_{\mathrm{r}}=\mathrm{S}_{\mathrm{r}}{ }^{\star} 100 / \mathrm{Y}$	0.1283
Relative Standard Deviation of Reproducibility $\mathrm{RSD}_{\mathrm{R}}=\mathrm{S}_{\mathrm{R}}{ }^{\star} 100 / \mathrm{Y}$	0.43
Horwitz $\mathrm{RSD}_{\mathrm{R}}($ Hor $)=2^{\wedge}\left[1-0.5^{\star} \log (\mathrm{Y} / 1000)\right]$	2.01
HorRat	0.21

Table 8 Statistics of the results of TC2

$\mathrm{S}_{1}=$ Sum Yi	3835.4000		
$\mathrm{S}_{2}=$ Sum Yi^{2}	3677695.8863		
$\mathrm{S}_{3}=$ Sum Si${ }^{2}$	6.2317		
No. Lab P	4		
No. Determination n	4		
Average $\mathrm{Y}=\mathrm{S}_{1} / \mathrm{P}$	958.8500		
$\mathrm{Sr}^{2}=\mathrm{S}_{3} / \mathrm{P}$	1.5579	S_{r}	1.2482
$\mathrm{SL}^{2}=\left[\left(\mathrm{P}^{*} \mathrm{~S}_{2}-\mathrm{S}_{1}{ }^{2}\right) / \mathrm{P}(\mathrm{P}-1)\right]-\mathrm{Sr}^{2} / \mathrm{n}$	40.4759	SL	6.3621
$\mathrm{SR}^{2}=\mathrm{S}_{\mathrm{r}}{ }^{2}+\mathrm{S}^{2}{ }^{2}$	42.0339	S_{R}	6.4834
Repeatability $\mathrm{r}=2.8 * \mathrm{~S}_{\mathrm{r}}$	3.4949		
Reproducibility $\mathrm{R}=2.8 * \mathrm{~S}_{\mathrm{R}}$	18.1534		
Relative Standard Deviation of Repeatability RSD $_{\mathrm{r}}=\mathrm{S}_{\mathrm{r}}{ }^{*} 100 / \mathrm{Y}$	0.1302		
Relative Standard Deviation of Reproducibility $\mathrm{RSD}_{\mathrm{R}}=\mathrm{S}_{\mathrm{R}}{ }^{*} 100 / \mathrm{Y}$	0.68		
$\begin{gathered} \text { Horwitz } \\ \mathrm{RSD}_{\mathrm{R}}(\mathrm{Hor})=2^{\wedge}\left[1-0.5^{*} \log (\mathrm{Y} / 1000)\right] \end{gathered}$	2.01		
HorRat	0.34		

Table 9 Statistics of the results of SC1

$\mathrm{S}_{1}=$ Sum Yi	1385.9500		
$\mathrm{~S}_{2}=\mathrm{Sum} \mathrm{Yi}^{2}$	480234.8688		
$\mathrm{~S}_{3}=\mathrm{Sum} \mathrm{Si}^{2}$	3.5083		
No. Lab P	4		
No. Determination n	4		
Average $\mathrm{Y}=\mathrm{S}_{1} / \mathrm{P}$	346.4875		
$\mathrm{Sr}^{2}=\mathrm{S}_{3} / \mathrm{P}$	0.8771	$\mathrm{~S}_{\mathrm{r}}$	0.9365
$\mathrm{~S}_{\mathrm{L}}{ }^{2}=\left[\left(\mathrm{P}^{*} \mathrm{~S}_{2}-\mathrm{S}_{1}{ }^{2}\right) / \mathrm{P}(\mathrm{P}-1)\right]-\mathrm{S}_{\mathrm{r}}{ }^{2} / \mathrm{n}$	6.6201	$\mathrm{~S}_{\mathrm{L}}$	2.5730
$\mathrm{~S}_{\mathrm{R}^{2}=\mathrm{S}_{\mathrm{r}}{ }^{2}+\mathrm{S}_{\mathrm{L}}{ }^{2}}$	7.4972	$\mathrm{~S}_{\mathrm{R}}$	2.7381

Repeatability $\mathrm{r}=2.8^{*} \mathrm{~S}_{\mathrm{r}}$	2.6223
Reproducibility $\mathrm{R}=2.8^{*} \mathrm{~S}_{\mathrm{R}}$	7.6667
Relative Standard Deviation of Repeatability $\mathrm{RSD}_{\mathrm{r}}=\mathrm{S}_{\mathrm{r}}{ }^{*} 100 / \mathrm{Y}$	0.2703
Relative Standard Deviation of Reproducibility $\mathrm{RSD} \mathrm{R}_{\mathrm{R}}=\mathrm{S}_{\mathrm{R}}{ }^{*} 100 / \mathrm{Y}$	0.79
Horwitz $R \mathrm{RD}_{\mathrm{R}}($ Hor $)=2 \wedge\left[1-0.5^{*} \log (\mathrm{Y} / 1000)\right]$	2.35
HorRat	0.34

Table 10 Statistics of the results of SC2

$\mathrm{S}_{1}=$ Sum Yi	1387.9500		
$\mathrm{S}_{2}=$ Sum Yi^{2}	481632.7888		
$\mathrm{S}_{3}=$ Sum Si ${ }^{2}$	30.8283		
No. Lab P	4		
No. Determination n	4		
Average $\mathrm{Y}=\mathrm{S}_{1} / \mathrm{P}$	346.9875		
$\mathrm{Sr}^{2}=\mathrm{S}_{3} / \mathrm{P}$	7.7071	S_{r}	2.7762
$\mathrm{SL}^{2}=\left[\left(\mathrm{P} * \mathrm{~S}_{2}-\mathrm{S}_{1}{ }^{2}\right) / \mathrm{P}(\mathrm{P}-1)\right]-\mathrm{Sr}^{2} / \mathrm{n}$	8.5693	SL	2.9273
$\mathrm{SR}^{2}=\mathrm{S}_{\mathrm{r}}{ }^{2}+\mathrm{S}_{\mathrm{L}}{ }^{2}$	16.2764	S_{R}	4.0344
Repeatability $\mathrm{r}=2.8{ }^{*} \mathrm{~S}_{\mathrm{r}}$	7.7733		
Reproducibility $\mathrm{R}=2.8 * \mathrm{~S}_{\mathrm{R}}$	11.2963		
Relative Standard Deviation of Repeatability $\mathrm{RSD}_{\mathrm{r}}=\mathrm{S}_{\mathrm{r}}{ }^{*} 100 / \mathrm{Y}$	0.8001		
Relative Standard Deviation of Reproducibility $\mathrm{RSD}_{\mathrm{R}}=\mathrm{S}_{\mathrm{R}}{ }^{*} 100 / \mathrm{Y}$	1.16		
$\begin{gathered} \text { Horwitz } \\ \mathrm{RSD}_{\mathrm{R}}(\mathrm{Hor})=2^{\wedge}\left[1-0.5^{*} \log (\mathrm{Y} / 1000)\right] \end{gathered}$	2.35		
HorRat	0.50		

Table 11 Statistics of the results of OD1

$\mathrm{S}_{1}=$ Sum Yi	341.7500
$\mathrm{~S}_{2}=$ Sum Yi	29204.3138
$\mathrm{~S}_{3}=$ Sum Si 2	0.3017

No. Lab P	4		
No. Determination n	4		
Average $\mathrm{Y}=\mathrm{S}_{1} / \mathrm{P}$	85.4375		
$\mathrm{Sr}^{2}=\mathrm{S}_{3} / \mathrm{P}$	0.0754	S_{r}	0.2746
$\mathrm{SL}^{2}=\left[\left(\mathrm{P}^{*} \mathrm{~S}_{2}-\mathrm{S}_{1}{ }^{2}\right) / \mathrm{P}(\mathrm{P}-1)\right]-\mathrm{Sr}^{2} / \mathrm{n}$	1.9972	SL	1.4132
$\mathrm{S}_{\mathrm{R}}{ }^{2}=\mathrm{S}_{\mathrm{r}}{ }^{2}+\mathrm{S}_{\mathrm{L}}{ }^{2}$	2.0726	S_{R}	1.4397
Repeatability $\mathrm{r}=2.8 * \mathrm{~S}_{\mathrm{r}}$	0.7689		
Reproducibility $\mathrm{R}=2.8 * \mathrm{~S}_{\mathrm{R}}$	4.0310		
Relative Standard Deviation of Repeatability $\mathrm{RSD}_{\mathrm{r}}=\mathrm{S}_{\mathrm{r}}{ }^{*} 100 / \mathrm{Y}$	0.3214		
Relative Standard Deviation of Reproducibility $\mathrm{RSD}_{\mathrm{R}}=\mathrm{S}_{\mathrm{R}}{ }^{*} 100 / \mathrm{Y}$	1.69		
$\begin{gathered} \text { Horwitz } \\ \mathrm{RSD}_{\mathrm{R}}(\mathrm{Hor})=2^{\wedge}\left[1-0.5^{*} \log (\mathrm{Y} / 1000)\right] \end{gathered}$	2.90		
HorRat	0.58		

Table 12 Statistics of the results of OD2

$\mathrm{S}_{1}=$ Sum Yi	341.1750		
$\mathrm{S}_{2}=$ Sum Yi^{2}	29106.0594		
$\mathrm{S}_{3}=$ Sum Si ${ }^{2}$	0.4508		
No. Lab P	4		
No. Determination n	4		
Average $\mathrm{Y}=\mathrm{S}_{1} / \mathrm{P}$	85.2938		
$\mathrm{Sr}^{2}=\mathrm{S}_{3} / \mathrm{P}$	0.1127	S_{r}	0.3357
$\mathrm{SL}^{2}=\left[\left(\mathrm{P}^{*} \mathrm{~S}_{2}-\mathrm{S}_{1}{ }^{2}\right) / \mathrm{P}(\mathrm{P}-1)\right]-\mathrm{Sr}^{2} / \mathrm{n}$	1.9599	SL	1.4000
$\mathrm{SR}^{2}=\mathrm{S}_{\mathrm{r}}{ }^{2}+\mathrm{S}^{2}{ }^{2}$	2.0726	S_{R}	1.4397
Repeatability $\mathrm{r}=2.8 * \mathrm{~S}_{\mathrm{r}}$	0.9400		
Reproducibility $\mathrm{R}=2.8 * \mathrm{~S}_{\mathrm{R}}$	4.0310		
Relative Standard Deviation of Repeatability $\mathrm{RSD}_{\mathrm{r}}=\mathrm{S}_{\mathrm{r}}{ }^{*} 100 / \mathrm{Y}$	0.3936		
Relative Standard Deviation of Reproducibility $\mathrm{RSD}_{\mathrm{R}}=\mathrm{S}_{\mathrm{R}}{ }^{*} 100 / \mathrm{Y}$	1.69		
$\begin{gathered} \text { Horwitz } \\ \mathrm{RSD}_{\mathrm{R}}(\mathrm{Hor})=2^{\wedge}\left[1-0.5^{*} \log (\mathrm{Y} / 1000)\right] \end{gathered}$	2.90		

HorRat	0.58

mV

Figure 7. HPLC chromatogram of tembotrione standard (Lab 1)

Figure 8. HPLC chromatogram of tembotrione standard (Lab 2)

Figure 9. HPLC chromatogram of tembotrione standard (Lab 3)

Figure 10. HPLC chromatogram of tembotrione standard (Lab 4)

Figure 11. HPLC chromatogram of tembotrione TC (Lab 1)

Figure 12. HPLC chromatogram of tembotrione TC (Lab 2)

Figure 13. HPLC chromatogram of tembotrione TC (Lab 3)

Figure 14. HPLC chromatogram of tembotrione TC (Lab 4)

Figure 15. HPLC chromatogram of tembotrione SC (Lab 1)

Figure 16. HPLC chromatogram of tembotrione SC (Lab 2)

Figure 17. HPLC chromatogram of tembotrione SC (Lab 3)

Figure 18. HPLC chromatogram of tembotrione SC (Lab 4)

Figure 19. HPLC chromatogram of tembotrione OD (Lab 1)

Figure 20. HPLC chromatogram of tembotrione OD (Lab 2)

Figure 21. HPLC chromatogram of tembotrione OD (Lab 3)

Figure 22. HPLC chromatogram of tembotrione OD (Lab 4)

