DETERMINATION OF FREE Methoprene in CS FORMULATIONS

SCOPE

The method is intended only for the determination of free methoprene in CS formulations.

OUTLINE OF METHOD

A known quantity of the capsule suspension is transferred to a glass bottle and then subjected to a process of rotary evaporating extraction with a specified amount of n-hexane containing an internal standard. After mixing/extraction for a specified period, the content of free methoprene in the n-hexane layer is determined by GC-FID.

REAGENTS

Water conforming to ASTM Type II. APPARATUS 250 ml Glass flask glass Rotary evaporator *Timer* capable of measuring to the nearest second

(1) Extraction of free methoprene

Prepare solutions in duplicate for each sample. Weigh approximately 20 g (to the nearest 0.1mg) of the sample into a 250 mL glass flask with a stopper, pipette 5 mL of water, cap and shake well until completely dispersed and add 100 mL of the n-hexane internal standard solution prepared. Place the above solution on a rotary evaporator at atmospheric pressure at ambient temperature for 5 minutes at 70 rpm. The bottle is removed, placed vertically on a flat surface and left to stand for 1 minute. Take 1 mL of the top solution (taking care not to extract any precipitate containing n-hexane) and place in an autosampler vial (solutions S_A and S_B).

(2) Determination of free methoprene

OUTLINE OF METHOD

The amount of free methoprene in the n-hexane layer is determined by capillary gas chromatography.

REAGENTS

Methoprene standard of known purity

- *n-hexane* HPLC grade. n-hexane is harmful by inhalation and prolonged exposure may cause serious health damage. Always handle and use this material, with the appropriate PPE within a well-ventilated area.
- *Eicosane* internal standard. Must not contain impurities with the same retention time as methoprene.

Internal standard solution. Dissolve Eicosane (1000mg) in n-hexane (1000ml).

Calibration solution. Weigh in duplicate (to the nearest 0.1 mg) 100 mg (*s* mg) of Methoprene standard into a volumetric flask (100ml) and make up to volume with internal standard solution, Mix thoroughly (calibration solutions C_A and C_B).

APPARATUS

Gas chromatograph capable of operating within the range from 100 to 300 °C, equipped with a flame ionisation detector and a split/splitless injector

Capillary column 30 m × 0.25 mm (i.d.), coated with 100 % bonded and crosslinked dimethylpolysiloxane, film thickness 0.25 μ m

Automatic digital integrator or chromatography data system compatible with the gas chromatograph

PROCEDURE

(a) Chromatogra	aphic conditi	ons (tyj	pical):			
Column	Column Fused silica, $30 \text{ m} \times 0.25 \text{ mm}$ (i.d.) coated with					
		100	%	chemically	bonded	an
		d thickr	cross-lir با 0.25 p	iked dimethylpol	lysiloxane, film	
Injection sys	tem		·			
Injector	Split injed	ction. C analys		condition of the l	iner prior to	
Split ratio:	100:1					
Split flow:	140 ml	/min				
Detector Temperature		sation				
Injector:	250 °C					
Detector:	300 °C					
Oven progr	am ini	progra	perature: am rate: 10 emperatur		n)	
Injection vol Flow rate	<i>ume:</i> 1	μl				
Nitrogen (carrier gas) 25 ml/min (pressure: 150 kPa)						
Retention tin	<i>nes</i> me		ne: about 7 ane: about			

3

(b) Linearity check. Before conducting the analysis check the linearity of the detector response by injecting 1 1 of solutions with methoprene concentrations 0.5, 1 and 2 times that of the calibration solution.

(c) System equilibration. Prepare two calibration solutions. Inject 1 μ l portions of the first one until the response factors obtained from two consecutive injections differ by less than 1.0 %. Then inject a 1 μ l portion of the second solution. The response factor for this solution should not deviate by more than 1.0 % from that for the first calibration solution, otherwise prepare new calibration solutions.

(d) Determination. Inject in duplicate 1 μ l portions of each sample solution (S_A and S_B) bracketing them by injections of the calibration solutions (C_A and C_B) as follows:

 C_A , $S_A 1$, $S_A 2$, C_B , $S_B 1$, $S_B 2$, $C_A \dots$ etc. Measure the relevant peak areas.

(e) Calculation. Calculate the response factors (f_i) for the pair of calibration injections which bracket the sample injections $S_A 1$, $S_A 2$ etc. and calculate the mean response factor f.

Methoprene content =

 $f H_w$

g/kg

where:

 f_i = individual response factor f = mean response factor

Iq w

3

 H_s = peak area of methoprene in the calibration solution

 H_w = peak area of methoprene in the sample solution

 I_r = peak area of the internal standard in the calibration solution

 I_a = peak area of the internal standard in the sample solution

s = mass of methoprene in the calibration solution (mg)

w = mass of sample taken (mg)

P = purity of methoprene (g/kg)

(3) Calculation.

where:

```
R Q 100%
c
```

Q = content of free methoprene(g/kg)

c = content of total methoprene(g/kg), determined by method 414/CS/(M)/3

R = percentage of free methoprene relative to the total smethoprene content (%)

Fig 1 Typical chromatogram of methoprene standard

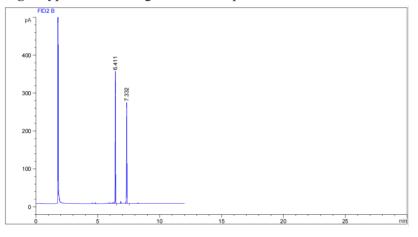
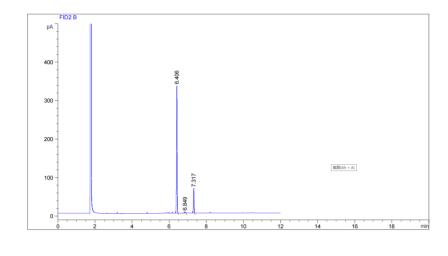



Fig 1 Typical chromatogram of methoprene in CS formulation

