4-(TRIFLUOROMETHYL)-NICOTINAMIDE DRAFT

ISO Common Name	4-(trifluoromethyl)-nicotinamide
Chemical Name	4-(trifluoromethyl)pyridine-3-carboxamide
Empirical formula	$C_7H_5F_3N_2O$
RMM	190.1
<i>m.p</i> .	not available
CAS Number	158062-71-6

4-(TRIFLUOROMETHYL)-NICOTINAMIDE DRAFT

1 Sampling. Take at least 300 mg.

2 Identity test

2.1 HPLC. Use the HPLC method below. The relative retention time of 4-(trifluoromethyl)-nicotinamide in the sample solution should not deviate by more than 2% from that of the calibration solution. The UV spectrum measured from this peak should match that obtained from the calibration substance. (Fig 1)

3 4-(Trifluoromethyl)-nicotinamide

OUTLINE OF METHOD

4-(trifluoromethyl)-nicotinamide is determined by reversed phase high performance liquid chromatography using UV detection at 265 nm and external standardization.

REAGENTS

4-(trifluoromethyl)-nicotinamide reference standard with known content.

Acetonitrile HPLC grade.

Deionized water.

Phosphoric acid (85%).

acetonitrile / 0.5% v/v phosphoric acid in water (50/50 v/v)

Calibration solution. Weigh in duplicate (to the nearest 0.1 mg) 90 – 110 mg (*s* mg) of 4-(trifluoromethyl)-nicotinamide reference standard into separate 100 ml volumetric flasks. Dissolve with 90 ml acetonitrile and treat for approx. 5 minutes in an ultrasonic bath or until completely dissolved. Cool down to ambient temperature and make up to volume with acetonitrile. Dilute 10.0 ml of this solution into a 50 ml volumetric flask and make up to volume with acetonitrile / 0.5% v/v phosphoric acid in water (50/50 v/v) at ambient temperature. If necessary, clarify a portion of the solution using a PTFE 0.45 µm filter (solutions C_A and C_B).

APPARATUS

High performance liquid chromatograph equipped with an ultraviolet spectrophotometric detector and an injecting system capable of injecting 5 µl.

Column stainless steel, $150 \times 4.6 \text{ mm}$ (i.d.), packed with Kinetex Polar C18, 2.6 µm, or equivalent material with the same selectivity.

Ultrasonic bath

Dispensable PTFE filters, solvent compatible, 25 mm, porosity 0.45 µm.

Electronic integrator or data system

PROCEDURE

(a) Liquid chromatographic conditions (typical):

Column	stainless steel, 150 x 4.6 mm (i.d.), packed with Kinetex Polar C18, 2.6 µm, or equivalent material with the same selectivity.
Column temperature	30 °C
Flow rate	1.0 ml/min
Detector wavelength	265 nm
Injection volume	5 μl
Run time	13 min
Retention time	approximately 3.5 min

Gradient

time	% 0.5% v/v	% acetonitrile
(min)	phosphoric	
	acid in water	
0	95	5
8	10	90
10	10	90
10.1	95	5
13	95	5

(b) System equilibration. Prepare two calibration solutions. Inject 5 μ l portions of solution C_A until the response factors obtained for two consecutive injections differ by less than 1 %. Then inject a 5 μ l portion of the solution C_B. The response factor for this solution should not deviate by more than 1 % from that of solution C_A, otherwise prepare new calibration solutions.

(c) Sample preparation. Prepare solutions in duplicate for each sample. Weigh (to the nearest 0.1 mg) 90 – 110 mg (w mg) of the sample into a 100 ml volumetric flask. Dissolve with 90 ml acetonitrile and treat for approx. 5 minutes in an ultrasonic bath or until completely dissolved. Cool down to ambient temperature and make up to volume with acetonitrile. Dilute 10.0 ml of this solution into a 50 ml volumetric flask and make up to volume with acetonitrile / 0.5% v/v phosphoric acid in water (50/50 v/v) at ambient temperature. If necessary, clarify a portion of the solution using a PTFE 0.45 μ m filter (solutions S_A and S_B).

(d) **Determination.** If not otherwise requested inject in duplicate $5 \mu l$ portions of each sample solution, bracketing them with duplicate injections of the calibration solution as follows: calibration solution C_A , calibration solution C_B , calibration solution C_A , sample solution $S1_A$, sample solution $S1_B$, calibration solution C_A , sample solution $S2_A$, sample solution $S2_B$, calibration solution C_A , and so on for further samples. Measure the relevant peak areas.

(e) Calculation. Calculate the mean value of each pair of calibration response factors, bracketing the two injections of a sample, and use this value for calculating the 4-(trifluoromethyl)-nicotinamide contents of the bracketed sample injections.

$$f = \frac{s \times P}{H_s}$$

Content of 4-(trifluoromethyl)-nicotinamide =
$$\frac{f \times H_W}{W}$$
 g/kg

where:

- f = mean response factor
- H_s = peak area of 4-(trifluoromethyl)-nicotinamide in the calibration solution
- H_w = peak area of 4-(trifluoromethyl)-nicotinamide in the sample solution
- *s* = mass of 4-(trifluoromethyl)-nicotinamide reference standard in the calibration solution (mg)
- w = mass of sample taken (mg)
- P = purity of 4-(trifluoromethyl)-nicotinamide reference standard (g/kg)

Repeatability r = to be determined Reproducibility R = to be determined

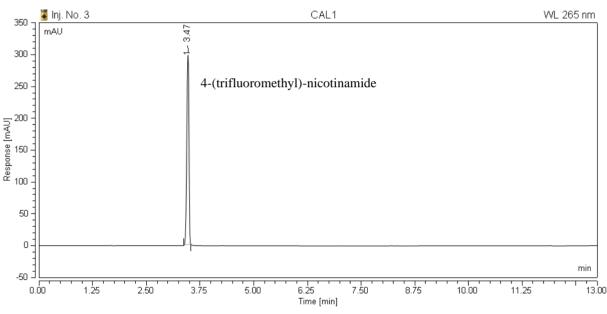


Fig 1 Typical chromatogram of 4-(trifluoromethyl)-nicotinamide TC