GIBBERELLIC ACID

Collaborative Study

Full Scale Collaborative Study for the Determination of Gibberellic acid in TC by HPLC

Report to CIPAC by Chinese Pesticide Analytical Committee (CHIPAC)

Method Developed by Zhejiang Qianjiang Biochemical Co., Ltd.

May 2024

Content

page

1.	Parti	3	
2.	Gibb	5	
3.	Sam	ples	6
4.	Metl	nod	7
	4.1	Scope	7
	4.2	7	
	4.3	Procedure	7
5.	Rem	arks of the Participants	8
6.	Evalu	uation and Discussion	10
	6.1	Evaluation of the Quality of Data and Chromatograms	10
	6.2	Determination of Gibberellic acid	10
7.	Cond	15	

1. Participants

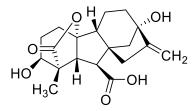
20 laboratories enrolled in the collaborative trial on the determination of Gibberellic acid according to CIPAC Information Sheet No. 339. But due to the shipment blocking, 1 laboratory could not receive the sample. By mid of March 2024, 19 laboratories provided their results. The results for the 19 participants are presented in the following section.

Participating laboratories are listed in the table below.

Contact person	Participating Laboratory	Country			
Moustafa A. Khalifa	The original Euboratory for original realing, The original				
Liang Huang	Anhui Fengle Agrochemical Co., Ltd. Product Testing Center	China			
Cornel Grecu	Biochem - ROMANIA Quality Control Laboratory	Romania			
Dagmar Julínková	Central institute for supervising and testing in agriculture National Reference Laboratory, Department of testing plant protection products	Czech Republic			
Chunqing Hou, Hongfeng Sun	China National Pesticide Quality Inspection and Testing Center (Shenyang)	China			
Lisha Zhang	Chongqing Chemical Pesticide Quality Supervision and Inspection Station	China			
Frank Fan, Rongmei Chen	GreenTech Laboratory Co., Ltd.				
Lu Huang	Hunan Research Institute of Chemical Industry Testing Technology Co., Ltd.	China			
Peize Li	Institute for the Control of Agrochemicals, Ministry of Agricultrue and Rural Affairs	China			
Jianzhong Yu	Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences	China			
Angela Santilio	National Institute of Health (Istituto Superiore di Sanità)	Italy			
Wendy Wang	Jiangsu Agrochem Laboratory Co., Ltd.	China			
Yily Yan	Jiangsu Rotam Chemistry Co., Ltd.	China			
Hongxia Li, Mingwei Zhu	Nutrichem (Shandong) Laboratory Co., Ltd				
Yuying Wang,Pesticide Quality Supervision, Inspection and Testing CenteDaifeng WangShenyang, MOA		China			

Agus Salim PT Agriculture Construction (AGRICON)		Indonesia
Christian Mink Syngenta Crop Protection AG		Switzerland
Yongfei Guo	Testing Technology Center of Sino-Agri Leading Bioscience Co., Ltd.	China
Vanessa Lecocq	Walloon Agricultural Research Centre (CRA-W) Protection, control products and residues Unit (U10)	Belgium

2. Gibberellic acid, General Information


 $Chemical name: (1\alpha, 2\beta, 4a\alpha, 4b\beta, 10\beta) - 2, 4a, 7-trihydroxy - 1 - methyl - 8-methylenegibb - 3-ene - 1, 10-methylenegibb - 3-ene -$

dicarboxylic acid 1,4a-lactone

Common name: Gibberellic acid

CAS-Number: 77-06-5

Structure:

Molecular mass: 346.4 g/mol

Empirical formula: C19H22O6

3. Samples

In October 2023, Information Sheet No. 344 was sent out by the CIPAC Secretary inviting members to participate in a collaborative study on the determination of Gibberellic acid by HPLC.

Three test samples (described below), including the Gibberellic acid analytical reference standard were shipped to the participants:

- A) Gibberellic acid TC-1
- B) Gibberellic acid TC-2
- C) Gibberellic acid TC-3

Gibberellic acid analytical reference standard (99.4% purity)

All participants sent back their results in time.

4. Method

4.1 Scope

The content of Gibberellic acid in technical materials was determined.

4.2 Principle

The content of Gibberellic acid in the sample is determined by high performance liquid chromatography on a reversed phase column (C_{18}) with UV detection at 210 nm and external standardization.

4.3 Procedure

Samples should be analyzed in duplicate at two different days resulting in a total of four individual test results for each sample. All test solutions should be prepared freshly on Day 2.

5. Remarks of the Participants

Participants made comments about the performance of the method and noted deviations from the method. Below is a summary of specific method conditions provided by the participating laboratories. No remark was feedback from participants.

Lab Number	Instrument	Column	Flow Rate (mL/min)	Column Temp. ℃	Wavelength (nm)	Injection Volume (μL)	Mobile phase (v/v)
1	Waters, Alliance	Agilent Zorbax Extend-C ₁₈ (150×4.6 mm, 5 μm)	1	33	210	5	MeOH : 0.05 % phosphoric acid aqueous solution 33 : 67 (v/v)
2	Thermo Vanquish Flex	Zorbax Eclipse-C ₁₈ (150× 0.46 mm, 5 μm)	1	33	210	5	MeOH : 0.05 % phosphoric acid aqueous solution 33 : 67 (v/v)
3	Agilent 1100 Series	Agilent Zorbax SB-C ₁₈ (150× 4.6 mm, 5 μm)	1	33	210	5	MeOH : 0.05 % phosphoric acid aqueous solution 33 : 67 (v/v)
4	Perkin Elmer FLEXAR	Zorbax SB-C ₁₈ (250×4.6 mm, 5 μm)	1	33	210	5	MeOH : 0.05 % phosphoric acid aqueous solution 33 : 67 (v/v)
5	Agilent 1260 Infinity II	Agilent Zorbax SB-C ₁₈ (150× 4.6 mm, 5 μm)	1	33	210	5	MeOH : 0.05 % phosphoric acid aqueous solution 33 : 67 (v/v)
6	Agilent 1100	Agilent Zorbax SB-C ₁₈ (150× 4.6 mm, 5 μm)	1	33	210	5	MeOH : 0.05 % phosphoric acid aqueous solution 33 : 67 (v/v)
7	Agilent 1260	Agilent Zorbax SB-C ₁₈ (150× 4.6 mm, 5 μm)	1	33	210	5	MeOH : 0.05 % phosphoric acid aqueous solution 33 : 67 (v/v)
8	Agilent 1260	Agilent SB-C ₁₈ (150×4.6 mm, 5 μm)	1	33	210	5	MeOH : 0.05 % phosphoric acid aqueous solution 33 : 67 (v/v)

Lab Number	Instrument	Column	Flow Rate (mL/min)	Column Temp. ℃	Wavelength (nm)	Injection Volume (μL)	Mobile phase (v/v)
9	Agilent 1260 infinity	Agilent SB-C ₁₈ (150×4.6 mm, 5 μm)	1	33	210	5	MeOH : 0.05 % phosphoric acid aqueous solution 33 : 67 (v/v)
10	Agilent 1260	Zorbax SB-C ₁₈ (150×4.6 mm, 5 μm)	1	33	210	5	MeOH : 0.05 % phosphoric acid aqueous solution 33 : 67 (v/v)
11	Agilent 1260 infinity	Agilent SB-C₁ଃ (150×4.6 mm, 5 µm)	1	33	210	5	MeOH : 0.05 % phosphoric acid aqueous solution 33 : 67 (v/v)
12	Agilent 1260	Agilent Zorbax Eclipse Plus C ₁₈ (150×4.6 mm, 5 μm)	1	33	210	5	MeOH : 0.05 % phosphoric acid aqueous solution 33 : 67 (v/v)
13	Shimadzu 20AT	Thermo <mark>hypersyl</mark> ODS (150× 4.6 mm, 5 μm)	1	33	210	5	MeOH : 0.05 % phosphoric acid aqueous solution 33 : 67 (v/v)
14	Agilent 1260 infinity II	Intertsustain C ₁₈ (150×4.6 mm, 5 μm)	1	33	210	5	MeOH : 0.05 % phosphoric acid aqueous solution 33 : 67 (v/v)
15	LC-20AD	Zorbax SB-C ₁₈ (150×4.6 mm, 5 μm)	1	30	210	5	MeOH : 0.05 % phosphoric acid aqueous solution 33 : 67 (v/v)
16	Agilent 1260 infinity	Agilent SB-C₁ଃ (150×4.6 mm, 5 µm)	1	30	210	5	MeOH : 0.05 % phosphoric acid aqueous solution 33 : 67 (v/v)
17	Agilent 1260	Zorbax SB-C ₁₈ (150×4.6 mm, 5 μm)	1	33	210	5	MeOH : 0.05 % phosphoric acid aqueous solution 33 : 67 (v/v)
18	Agilent 1260 II	Waters ODS2 (150×4.6 mm, 5 μm)	1	33	210	5	MeOH : 0.05 % phosphoric acid aqueous solution 33 : 67 (v/v)
19	Agilent 1200	Venusil XBP C ₁₈ 150mm×4.6mm,5µm	1	33	210	5	MeOH : 0.05 % phosphoric acid aqueous solution 33 : 67 (v/v)

6. Evaluation and Discussion

6.1 Evaluation of the Quality of Data and Chromatograms

The data obtained from each of the laboratories were reviewed to determine if there were any significant deviations regarding the chromatography which might affect the analysis results. Visual examination of the chromatograms showed no evidence for invalid data. All other changes and observations noted by the 19 participants were not expected to affect the analysis results significantly.

6.2 Determination of Gibberellic acid

Results reported by the laboratories and the statistical evaluation are listed in tables 1-3 and displayed in figures 1-3.

The statistical evaluation of the data was done following the "Guidelines for CIPAC Collaborative Study Procedures for Assessment of Performance of Analytical Methods", according to DIN ISO 5725. The data were examined for outliers and stragglers using the Grubb's test, and the tests were performed at an alpha level of 0.01 for outlier (marked with **), and 0.05 for straggler (marked with *).

After Grubb's test, no outliers or stragglers have been found for all laboratories (19 participants). The between lab experimental Relative Reproducibility Standard Deviation (RSD_R) is below the Horwitz value for all samples (see Table 3), and the HorRat values were between 0.3 to 1.0. Due to the universal applicability of the method, this collaborative trial is acceptable.

	Gibberellic	acid TC-1	Gibberellic acid TC-2		Gibberell	Gibberellic acid TC-3		
	Day1	Day2	Day1	Day2	Day1	Day2		
Lab 1	913.9	910.0	915.9	913.9	914.6	918.6		
Lab 2	913.4	915.2	913.4	915.4	919.2	919.7		
Lab 3	912.8	913.3	915.3	916.2	915.9	917.4		
Lab 4	883.7	923.7	915.8	925.2	914.4	881.1		
Lab 5	914.5	916.5	916.4	916.1	922.9	917.3		
Lab 6	902.0	911.6	907.9	912.5	909.9	913.6		
Lab 7	911.7	912.3	912.5	909.9	915.2	914.1		
Lab 8	910.7	912.9	916.4	914.7	914.8	911.8		
Lab 9	914.4	915.5	915.3	915.0	916.6	917.1		
Lab 10	914.8	915.0	912.7	913.0	915.4	915.5		
Lab 11	904.1	904.3	911.9	911.0	910.6	908.3		
Lab 12	912.7	912.4	915.6	910.9	920.2	915.4		
Lab 13	907.1	901.4	905.9	901.7	906.1	903.9		
Lab 14	918.2	913.4	918.6	915.8	926.9	923.5		
Lab 15	908.6	911.9	909.3	911.0	913.6	913.3		
Lab 16	883.8	903.7	903.8	912.4	902.9	912.5		
Lab 17	909.6	908.3	910.3	908.5	910.7	907.8		
Lab 18	918.0	924.5	921.0	912.1	927.8	911.1		
Lab 19	924.4	917.7	917.8	919.3	919.0	921.7		

 Table 1:
 Gibberellic acid (g/kg); Results for each laboratory on day 1 and day 2

Table 2: Mean values

	Gibberellic acid TC-1	Gibberellic acid TC-2	Gibberellic acid TC-3
Lab 1	911.9	914.9	916.6
Lab 2	914.3	914.4	919.4
Lab 3	913.0	915.8	916.7
Lab 4	903.7	920.5	897.7
Lab 5	915.5	916.3	920.1
Lab 6	906.8	910.2	911.7
Lab 7	912.0	911.2	914.6
Lab 8	911.8	915.6	913.3
Lab 9	914.9	915.1	916.8
Lab 10	914.9	912.8	915.5
Lab 11	904.2	911.4	909.4
Lab 12	912.5	913.2	917.8
Lab 13	904.2	903.8	905.0
Lab 14	915.8	917.2	925.2
Lab 15	910.2	910.1	913.4
Lab 16	893.7	908.1	907.7
Lab 17	908.9	909.4	909.2
Lab 18	921.3	916.5	919.4
Lab 19	921.0	918.5	920.4

	Gibberellic acid TC-	Gibberellic acid TC-	Gibberellic acid TC-
	1	2	3
xm [g/kg]	911.3	913.6	914.6
L	19	19	19
Sr	13.13	7.172	11.91
SR	13.15	7.451	12.37
SL	0.6770	2.021	3.356
r	36.77	20.08	33.35
R	36.82	20.86	34.65
RSDr	1.441	0.7850	1.302
RSD _R	1.443	0.8156	1.353
RSD _R (Hor)	2.028	2.027	2.027
HorRat	0.7	0.4	0.7

Table3: Summary of the statistical evaluation - no elimination of any outliers /stragglers

X_m = overall sample mean

L = number of laboratories

 S_r = repeatability standard deviation

RSD_r = relative repeatability standard deviation

r = repeatability limit

 S_R = reproducibility standard deviation

RSD_R = relative reproducibility standard deviation

R = reproducibility limit

S_L = "pure" between laboratory standard deviation

 $RSD_R(Hor)$ = relative reproducibility standard deviation (Horwitz equation)

Figures 1 – 3 (all results)

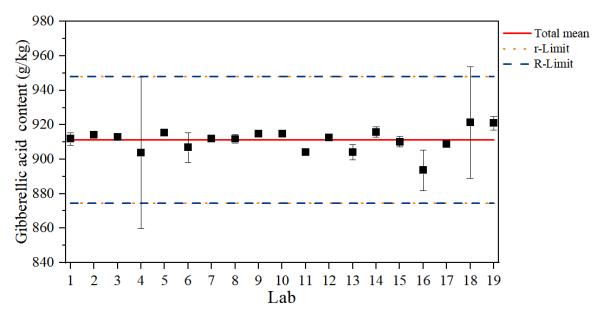


Figure 1. Graphical presentation of TC1 data

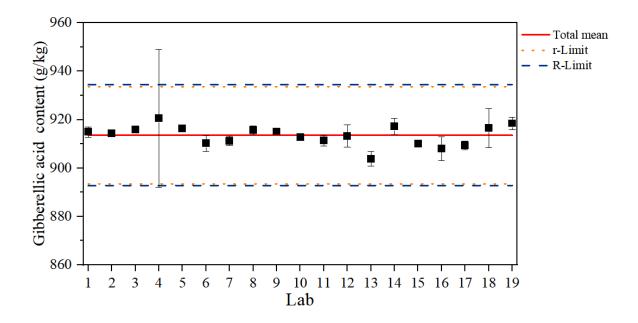


Figure 2. Graphical presentation of TC2 data

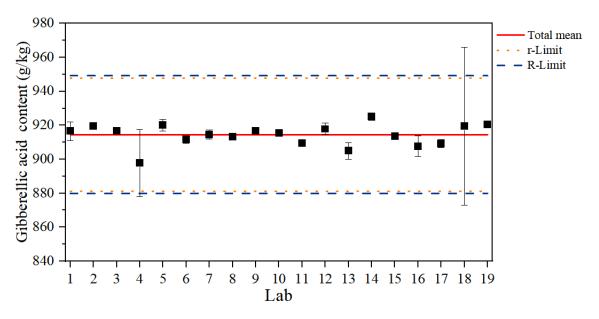


Figure 3. Graphical presentation of TC3 data

7. Conclusions

A total of 20 laboratories have participated in this full scale collaborative study, and data from 19 participants have been included in the final data statistical. The data presented in the statistical summary show that the HorRat values all within the required range. That is evidence for the fact that the present HPLC method is acceptable and suitable to produce reproducible results.

Therefore, CHIPAC considers this method to be suitable and recommend accepting it as a provisional CIPAC method for the determination of Gibberellic acid in technical materials.