ABAMECTIN 495

avermectin B_{1a}

avermectin B_{1b}

ISO Common Name Abamectin

Chemical Name Mixture of Avermectin B_{1a} (at least 80%) and

Avermectin B_{1b} (CA)

mixture of 80–100% (10E,14E,16E)-

(1R,4S,5'S,6S,6'R,8R,12S,13S,20R,21R,24S)-6'-[(*S*)-*sec*-butyl]-21,24-dihydroxy-5',11,13,22-tetramethyl-2-oxo-(3,7,19-trioxatetracyclo[15.6.1.1^{4,8}.0^{20,24}]pentacosa-10,14,16,22-tetraene)-6-spiro-2'-(5',6'-dihydro-2'*H*-pyran)-12-yl 2,6-dideoxy-4-*O*-(2,6-dideoxy-3-*O*-methyl- α -L-*arabino*-hexopyranosyl)-3-*O*-methyl- α -L-*arabino*-hexopyranoside

and 20–0% (10*E*,14*E*,16*E*)-

(1*R*,4*S*,5'*S*,6*S*,6'*R*,8*R*,12*S*,13*S*,20*R*,21*R*,24*S*)-21,24-dihydroxy-6'-isopropyl-5',11,13,22-tetramethyl-2-oxo-(3,7,19-trioxatetracyclo[15.6.1.1^{4,8}.0^{20,24}]pentacosa-10,14,16,22-tetraene)-6-spiro-2'-(5',6'-dihydro-2'*H*-pyran)-12-yl 2,6-dideoxy-4-*O*-(2,6-dideoxy-3-*O*-methyl-α-L-*arabino*-hexopyranosyl)-3-*O*-methyl-α-L-*arabino*-hexopyranosyl-α-L-*arabino*-hex

hexopyranoside (IUPAC)

CAS Number Abamectin: 71751-41-2

Avermectin B_{1a}: 65195-55-3 Avermectin B_{1b}: 65195-56-4

Empirical formula Avermectin B_{1a}: C₄₈H₇₂O₁₄

Avermectin B_{1b}: C₄₇H₇₀O₁₄

Molecular mass Avermectin B_{1a}: 873.1

Avermectin B_{1b}: 859.1

m.p. 161.8-169.4°C (decomp.)

v.p < 0.0037 mPa at 25°C

Solubility In water 1.21 mg/l, acetone: 72 g/l, dichloromethane:

470 g/l, ethyl acetate: 160 g/l, hexane: 0.11 g/l,

methanol: 13 g/l, octanol: 83 g/l, toluene: 23 g/l; all at

20-25°C

Stability Stable to hydrolysis in aqueous solutions at pH 5, 7, and

9 (25°C). Sensitive to stronger acid and base. UV irradiation causes conversion first to the 8,9-Z-isomer,

then to unidentified decomposition products.

Description Colorless to pale yellow crystals

ABAMECTIN TECHNICAL *495/TC/(M)/-

- **Sampling.** Take at least 100 g.
- 2 Identity tests
- **2.1 HPLC.** Use the HPLC method below. The relative retention time of avermectin B_{1a} and B_{1b} for the sample solution should not deviate by more than 1.5% from that for the calibration solution.
- **2.2 Infrared.** Prepare potassium bromide discs for the technical sample and abamectin reference substance. Scan the discs from 4000 to 400 cm⁻¹. The spectrum from the sample should not differ significantly from that of the reference substance.

3 Abamectin

OUTLINE OF METHOD

Abamectin is determined by reversed phase high performance liquid chromatography using UV detection at 245 nm and external standardization.

REAGENTS

Abamectin: reference standard of known purity

Methanol: HPLC grade

Acetonitrile: HPLC grade

Water: Ultrapure water

Calibration solutions. Weigh in duplicate (to the nearest 0.1 mg) 50 mg of abamectin reference standard (s mg) into separate volumetric flasks (100 ml). Dilute to volume with methanol. Mix thoroughly and filter the solution through a 0.45 μ m filter membrane prior to analysis (calibration solutions C_A and C_B).

APPARATUS

High performance liquid chromatograph, equipped with a UV detector capable for operation at 245 nm, a constant-temperature column compartment and an injection system capable of injecting 5µl.

Column stainless steel, 250 \times 4.6 mm (i.d), packed with C_{18} 5.0 μ m, or equivalent with the same selectivity.

Filtering apparatus disposable plastic syringes (or equivalent) fitted with 0.45 µm filters.

Electronic integrator or data system

PROCEDURE

(a) Liquid chromatographic conditions (typical):

Column stainless steel, 250×4.6 mm (i.d), packed with C_{18}

5.0 μm, or equivalent

Mobile phase methanol: acetonitrile: water, 55:30:15 (v/v)

Column temperature $30^{\circ}\text{C} \pm 2^{\circ}\text{C}$

Flow rate 0.8 ml/min

Detector wavelength 245 nm

Injection volume 5 µl

Retention times avermectin B_{1a} about 25.2 min

avermectin B_{1b} about 19.7 min.

Run time 35 min

- (b) System equilibration. Inject 5 μ l portions of calibration solution C_A until the response factors (fi) obtained for two consecutive injections differ by less than 1.5%. Then inject 5 μ l portions of calibration solution C_B . The response factor (fi) for two consecutive injections should not deviate by more than 1.5% from that of solution C_A , otherwise prepare new calibration solutions.
- (c) Sample preparation. Prepare solutions in duplicate for each sample. Weigh (to the nearest 0.1 mg) sufficient sample (w mg) to contain about 50 mg of abamectin into a volumetric flask (100 ml). Make up to volume with methanol. Mix thoroughly and filter the solution through a 0.45 μ m filter membrane prior to analysis (sample solutions S_1 and S_2).

(d) **Determination.** Inject in duplicate 5μ l portions of each sample solution bracketing them by injections of the calibration solutions as follows:

$$C_A, S_1, S_1, C_B, S_2, S_2, C_A, ...$$

(e) Calculation. Calculate the mean value of each pair of calibration response factors f, bracketing the two injections of a sample, and use this value for calculating the abamectin contents of the bracketed sample injections.

$$f_i = \frac{s \times P}{H_s}$$

Content of abamectin =
$$\frac{H_W \times f}{W}$$
 (g/kg)

where:

fi = individual response factor

f = mean response factor

 H_s = peak area of abamectin (peak $B_{1b}+B_{1a}$) in the calibration solution

 H_w = peak area of abamectin (peak $B_{1b}+B_{1a}$) in the sample solution

s =mass of abamectin reference standard in the calibration solution (mg)

w = mass of sample taken (mg)

P = purity of the abamectin reference standard (g/kg)

Calculate the ratio of B_{1a} to B_{1b} of avermectin in the sample:

$$\alpha(B_{1a}/B_{1b}) = \frac{H_{W_{B1a}}}{H_{W_{B1b}}}$$

where:

 $\alpha(B_{1a}/B_{1b})$ = ratio of B_{1a} to B_{1b} of avermectin in the sample $H_{W_{B_1a}}$ = peak area of avermectin (peak B_{1a}) in the sample solution $H_{W_{B_1b}}$ = peak area of avermectin (peak B_{1b}) in the sample solution

Repeatability r = XXX-XXX g/kg at an active ingredient content of XXX-XXX g/kg

Reproducibility R = XXX-XXX g/kg at an active ingredient content of XXX-XXX g/kg

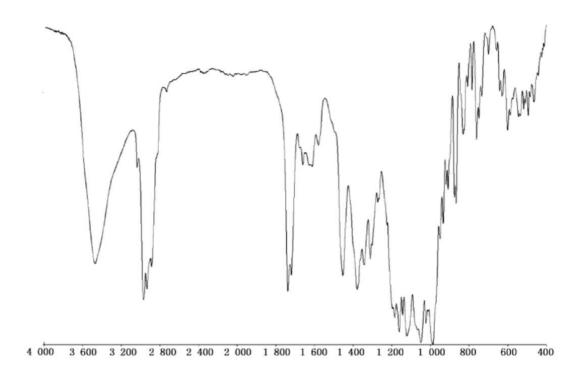
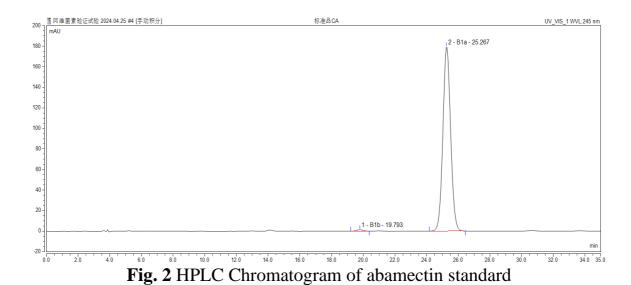



Fig. 1 FTIR spectrum of abamectin standard

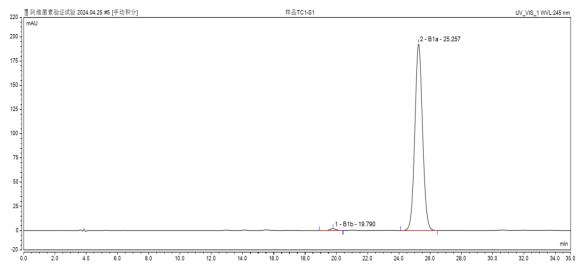


Fig. 3 HPLC Chromatogram of abamectin TC