

CENTRAL INSTITUTE FOR SUPERVISING AND TESTING IN AGRICULTURE

NATIONAL REFERENCE LABORATORY **Department of Testing Plant Protection Product**

Work carried out in the Czech Republic

(version for CIPAC website)

Olga Nováková

CIPAC Symposium 24th June 2014, Liege, Belgium

CONTENT

- 1. Introduction
- 2. Steps of laboratory control of PPPs in CZ
- 3. Example of analysis of suspicious samples
- 4. Problems with analysis of suspicious samples
- 5. Suggestion to discussion
- 6. Conclusion

REORGANIZATION OF FORMER STATE PHYTOSANITARY ADMINISTRATION (SPA)

1997-2013: 2 institutes

- SPA (State Phytosanitary Administration)
 - Postregistration Control Division
 - Department of Laboratory Testing Pesticide (= NRL for PPP)
- CISTA (Central Institute for Supervising and Testing in Agriculture)
 - Division: National Reference Laboratory (9 laboratories)

From 1.1.2014: 1 institute

- SPA + CISTA = CISTA
 - Division: National Reference Laboratory (9+1 laboratories)
 - Department of Testing Plant Protection Products = former Laboratory Testing Pesticide

STRUCTURE OF CENTRAL INSTITUTE FOR SUPERVISING AND TESTING IN AGRICULTURE (CISTA)

STRUCTURE OF NATIONAL REFERENCE LABORATORY

DEPARTMENT OF TESTING PLANT PROTECTION PRODUCTS

Head of Department

Laboratory of chromatographic methods

Laboratory of physicochemical methods

SYSTEM OF POSTREGISTRATION CONTROL – responsibility

Sampling

original packages

Laboratory analysis

report

Post-registration Control Department - responsibility

- annual plan with cooperation of laboratory
- sampling original packages PPP samples are taken directly in the distributor stores
- labeling control
- control of sale, storage and use of PPP
- control of technical state of application machinery

Laboratory- responsibility and competence

- Laboratory analysis
- laboratory check on physical and chemical properties of plant protection products and other plant protection preparations and chemical compositions
- report of analysis (+results with evaluation)

Evaluation

of results in accord with act

Post-registration Control Department – responsibility

- reconvey the rest of samples
- evaluation of results from laboratory in accord with act (law)
- information of authorization holders
- fine

LABORATORY CONTROL OF PPPs

Planned samples

- postregistration control according to annual plan
- samples within the process of PPP approval

Unplanned samples

- unknown samples
- suspicious samples (e.g. counterfeit)

Proficiencies tests (AAPCO, AFSCA, ...)

STEPS OF LABORATORY CONTROL

- Registration of samples (LIMS)
- Laboratory sampling
 - Original sample package is higher 1L or 1kg
 - Original sample package is lower 1L or 1kg
 Partition of laboratory sample = Analytical sample
- Laboratory analysis
- Evaluation of laboratory analysis
 - Certificate of analysis (Agreement or disagreement with specification)
 - Detailed expert reports

LABORATORY ANALYSIS

Planned samples – postregistration control according to annual plan

FAO specification or existing national specification

- Identity and content of active substances
- Identity and content of relevant impurities
- Physical, chemical and technical properties
- Storage stability tests

Xylene in EC formulations

Samples from parallel import – chromatographic and FTIR comparison with reference sample.

Methods: CIPAC, OECD or equivalent and the validated methods of producers, which are submitted as part of registration dossiers.

Laboratory verifies all methods according to standard operation procedure (SOP-PP-08-01).

LABORATORY ANALYSIS – cont.

Samples within the process of PPP approval Aim:

- Verify input data (technical specification)
- Verification or validation analytical methods in CZ conditions (different column...)
- Obtain knowledge of PPP
- Focus on chemical composition
- Time for discussion of laboratory analysis -analytical results with authorization holders
- Input data for postregistration control
- Future Help with detection of counterfeit

LABORATORY ANALYSIS – cont.

Unplanned control PPPs samples

- Unknown samples (samples without label, confusion of active ingredient,...)
- Suspicious samples

LABORATORY ANALYSIS – SUSPICIOUS SAMPLES

- Identity and content of active ingredient
- Identity and content of relevant impurities
- Physical, chemical and technical properties
- Chemical composition of sample (co-formulants, impurities,...)
- Comparison with reference sample (GC, LC, FTIR)

Additional tests for clarification of unregistered sample: GC/MS, FTIR, Particle size distribution (CIPAC MT187), Determination of Sulphated ash (CIPAC MT29), Pour and tap bulk density (USP2/ASTM), Density, Viscosity (CIPAC MT192), Surface tension (OECD 115), TGA method, DSC method

Appearance:

Differences of shape granules between reference sample and suspicious sample

Differences in colour between reference sample and suspicious sample

Density:

	Density [g/ml]
Reference PPP	1,170
Suspicious PPP	1,126

Result:

Suspicious PPP is probably diluted or has different chemical composition.

Density:

	Density [g/ml]	Dean – Stark (CIPAC MT 30.2) Amount of water (% w/w)	Amount of active ingredient (%)
Reference PPP	1,170	44,6	30,4
Suspicious PPP	1,126	60,7	21,8

Confirmation:

- determination of water by Dean-Stark (CIPAC MT 30.2)
- determination of amount active ingredients

Result:

Suspicious sample is diluted.

Sulphated ash (CIPAC MT 29):

Reference PPP (different batches)		
year	Sulphated ash [% w/w]	
2001	1,52	
2003	1,30	
2006	1,37	
2008	1,22	
2012	1,26	
2013	1,05	
average	1,29	

Suspicious PPP		
Year	Sulphated ash [% w/w]	
2001		
2003	15,52	
2006		
2008	19,40	
2012	10,52	
2013	8,62	
2013	6,83	

Result:

There are difference between inorganic ions in suspicious sample and reference sample - the chemical composition of suspicion sample is different from reference sample.

Surface tension (OECD 115):

PPP	Surface tension of 0,01% w/w solution (mN/m)	Surface tension of 0,5% w/w solution (mN/m)	Surface tension of 1,0 % w/w solution (mN/m)
Reference PPP	57,0	32,9	32,7
Suspicious PPP	59,4	69,9	71,8

Result:

Suspicious PPP probably does not contain surface active agent.

Particle size distribution (CIPAC MT 187):

Reference PPP

Suspicious PPP

Particle size distribution (CIPAC MT 187):

	Reference PPP	Suspicious PPP
Diameter at 10%	0,68 μm	0,80 μm
Diameter at 50%	2,45 μm	3,77 μm
Diameter at 90%	6,07 μm	9,68 μm
Mean diameter	2,97 μm	4,56 μm

Result:

Particle size distribution of particles which disperse in water in suspicious PPP are different. It means that it can be different technology of production.

HPLC screening by HPLC/UV:

Reference PPP (black), Suspicious PPP 1 (blue) Suspicious PPP 2 (green)

Result:

Suspicious PPP 1 has probably identical chemical composition with reference PPP, Suspicious PPP 2 has not identical chemical composition with reference PPP.

GC/FID – identification of co-formulant:

Reference PPP (blue)
Suspicious PPP (red)

GC/FID – identification of co-formulant:

Overlay chromatograms of reference PPP and suspicious PPP and Surface-active agent, extract 10-18min

Reference PPP (blue)
Suspicious PPP (red)
Surface-activ agent (green)

Result:

Suspicious PPP does not contain surface-active agent which is present in reference PPP.

GC/MSD identification of co-formulants:

GC/MSD chromatographic profile of PPP (split 100:1, extract 2-4min)

MSD spectrum of ethylene glycol

MSD spectrum of N,N-dimethylformamid

GC/MSD identification of co-formulants:

GC/MSD chromatographic profile of PPP (split 10:1, extract 4-8min)

MSD spectrum of naphthalene

GC/MSD identification of co-formulants:

GC/MSD chromatographic profile of PPP (split 10:1,extract 8-11,6 min)

MSD spectrum of N-octyl-2-pyrrolidone

GC/MSD identification of co-formulants:

GC/MSD chromatographic profile of EW formulation PPP - active ingredient (extract 11,6-12,6 min)

GC/MSD identification of co-formulants:

Summary:

Identified components	Reference PPP	Suspicious PPP	Content % w/w
N,N-dimethylformamide	No	Yes	16,78
N-octyl-2-pyrrolidone	No	Yes	0,306
Ethylene glycol	No	Yes	1,525
Naphthalene	No	Yes	0,018

Result:

The chemical composition of suspicious PPP are different from reference sample.

UV-VIS spectroscopy:

VIS spectrum:

Reference PPP

Suspicious PPP

Sample	λ max v DI water [nm]
Reference sample	628 nm
Suspicious sample	620 and 657 nm

Result:

The suspicious PPP does not contain the same dye as reference sample.

FTIR spectroscopy:

Reference PPP (blue), Suspicious PPP (red)

FTIR spectroscopy:

FTIR spectrum of Insoluble residues of PPP in CH₂Cl₂

Reference PPP (blue), Suspicious PPP (red)

FTIR spectroscopy:

FTIR spectrum of Insoluble residues of suspicious PPP in CH₂Cl₂ and kaolin CAS No. 1332-58-7

Suspicious PPP (blue), kaolin CAS No. 1332-58-7(red)

Result:

The suspicious PPP contains kaolin = the chemical composition is different from reference sample.

Differential Scanning Calorimetry (DSC):

Reference PPP

Suspicious PPP

Result:

The chemical composition of suspicious sample is different from reference sample.

Thermogravimetric analysis (TGA):

Reference PPP

Suspicious PPP

Result:

Different chemical composition of volatile compounds present in PPP or/and other compounds in PPP.

CONCLUSION

- Active ingredients and relevant impurities in suspicious PPP mostly agree with specification.
- We usually find differences in chromatography profile and/or in FTIR spectra between reference and suspicious samples:
 - we use the other technics and methods for identification.
- Necessity of cooperation between laboratories of national authority and producers (in interpretation of raw data, support of analytical method, standards...)
- Necessity of clear legislation.

CENTRAL INSTITUTE FOR SUPERVISING AND TESTING IN AGRICULTURE

NATIONAL REFERENCE LABORATORY **Department of Testing Plant Protection Product**

THANK YOU FOR THE ATTENTION!

e-mail: olga.novakova@ukzuz.cz

Office: Department of Testing Plant Protection Product Address: Zemědělská 1a, 613 00 Brno, Czech Republic

web: www.ukzuz.cz