

Analysis of active substances and co-formulants in ppp

The use of standardised Inhouse and multi methods

Outline

1. Background

- Definition of a multi method / standardised method
- Benefits of multi and standardised methods
- Laboratory for formulation analysis

2. Procedures used in the laboratory for formulation analysis

- Overview of general procedure
- Sample preparation
- Conditions used in HPLC/UV analysis
- Conditions used in GC/FID analysis
- Inhouse multi method

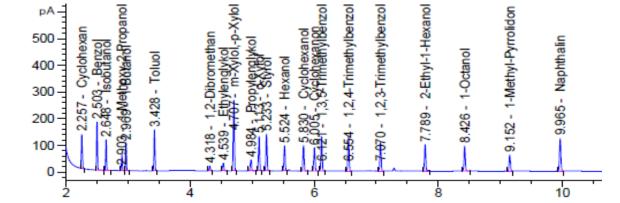
3. Conclusion

Standardised methods / multi methods

- Analysis of a sample is time consuming if a validated method is not available
 - research for existing methods
 - testing for appropriate conditions (sample preparation, solvents, instrumental setup etc.)
- Assumption:

Almost every laboratory in market control has a specific inhouse method or at least certain conditions as a starting point for analysis

– Optimisation depending on analyte and formulation type



What is a multi method?

Two possible definitions

Classic definition:

- analysis of several analytes in just one chromatographic run
- optimised for these specific analytes
- → One specific method which can be used to analyse defined substances

What is a multi method?

Two possible definitions

New definition (in context of ppp quality control):

- Standardised conditions, e.g.
 - defined sample preparation procedures,
 - defined solvents,
 - specific set of columns (GC and HPLC)
- Can be used universally for several analytes and formulation types
- Can also be used as a starting point for further method optimisation for single-analyte methods

\rightarrow Standardised method

Standardised methods / multi methods

What are the benefits?

- Time-saving
 - Less time needed for method development / optimisation
 - Less research for existing methods
 - One method for multiple analytes and matrixes

Cost-effective

- Less equipment required (instruments, columns, solvents, ...)

The use of a standardised method shortens the analytical process of a sample and makes the laboratory work more efficient!

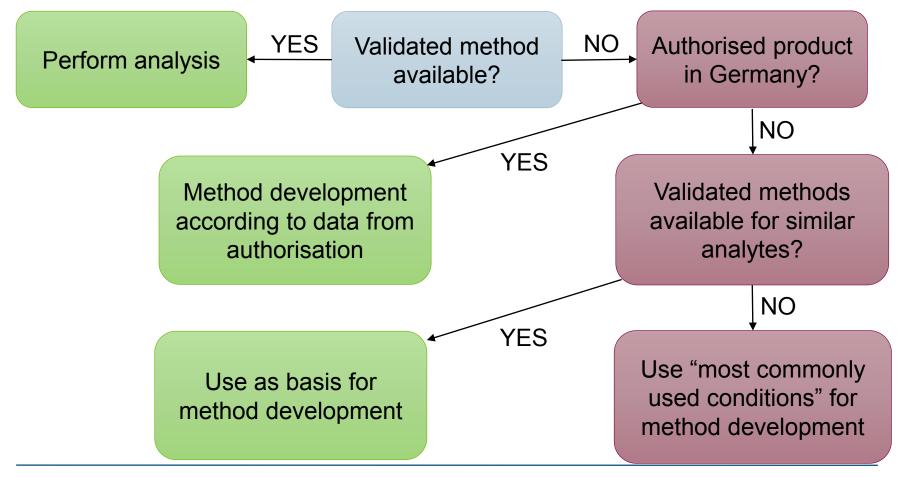
Laboratory for formulation analysis

What do we do at the BVL?

- Kinds of samples
 - Planned samples according to control plan
 - Suspicious samples
 - Samples from authorisation process
 - Parallel trade samples
 - Other samples

Parameters

- Physical, chemical and technical characteristics
- Active substances, co-formulants, impurities and foreign substances


market control

Laboratory for formulation chemistry

General procedure

Determining the content of active substance

Bundesamt für Verbraucherschutz und Lebensmittelsicherheit

Laboratory for formulation chemistry

Validated methods

HPLC/UV

- 143 single-analyte methods
- 3 multi methods

GC/FID

- 46 single-analyte methods
- 1 multi method

LC/MS

• 7 single-analyte methods

GC/MS

- 7 single-analyte methods
- 1 multi method
- 1 screening method

\rightarrow Need for a multi method to reduce number of used methods

Bundesamt für Verbraucherschutz und Lebensmittelsicherheit

Laboratory for formulation chemistry

Preparation of samples

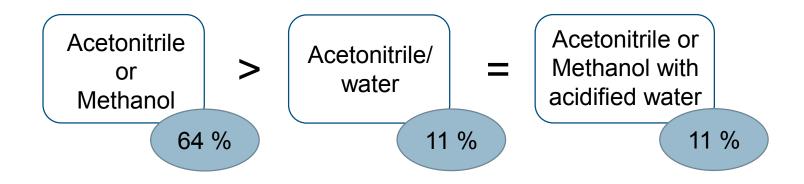
Homogenisation e.g. shaking (liquid ppp) or stirring (solid ppp)

Weigh sample (≥ 200 mg) into volumetric flask and add appropriate solvent

Sonication 15 min at 20 °C

Dilution and filtration (0.45 µm), if necessary

Analysis by HPLC/UV or GC/FID with external calibration

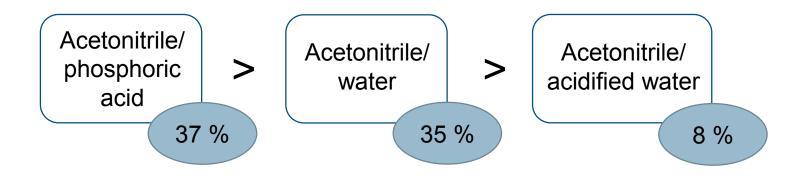


Analysis of active substances

Most commonly used conditions

• Solvent:

Remaining methods using e.g. buffer or other organic solvents



Analysis of active substances

Most commonly used conditions

• Mobile Phase:

- Mainly used: isocratic elution
- Composition of the mobile phase is analyte-dependent

Analysis of active substances

Most commonly used conditions

- Column: LiChrospher 100 RP-18, 250 x 4 mm (5 μm)
- Column temperature: 30 °C
- Flow rate: 1.5 mL/min
- Injection volume: 5 µL
- Wavelength: depending on analyte

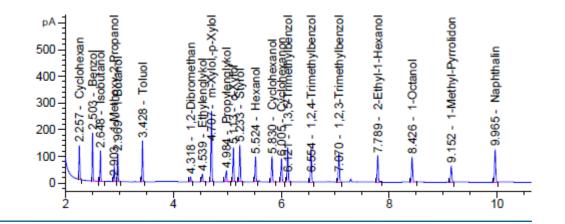
HPLC/UV - Analysis of active substances

Starting conditions for standardised inhouse methods

Solvent: Acetonitrile Column: LiChrospher 100 RP-18, 250 x 4 mm (5 µm) 30 °C Column temp.: Mobile Phase: Acetonitrile/ water (0.1 % phosphoric acid) • isocratic elution Flow rate: 1.5 mL/min • **Injection vol.:** 5 µL • Wavelength: analyte-dependent •

HPLC/UV - Analysis of active substances Validation data

- 8 methods (ca. 6 %) using the standardised conditions
- Mainly SC formulations


\rightarrow Conditions suitable for analysis of ppp

Analysis of active substances and co-formulants Most commonly used conditions

- GC conditions are already standardised
- Conditions are chosen according to inhouse multi method for co-formulants

Analysis of active substances and co-formulants

Most commonly used conditions

Solvent:Column:	Acetone Zebron ZB-1701 30 m x 0.32 mm x 0.25 μm
 Injector: 	split injection injection volume 1 μL injection port: 250 °C
Carrier gas:Detector gas:	Helium, constant flow 2 mL/min Hydrogen 40 mL/min Synthetic air 250 mL/min

Analysis of active substances and co-formulants

Most commonly used conditions

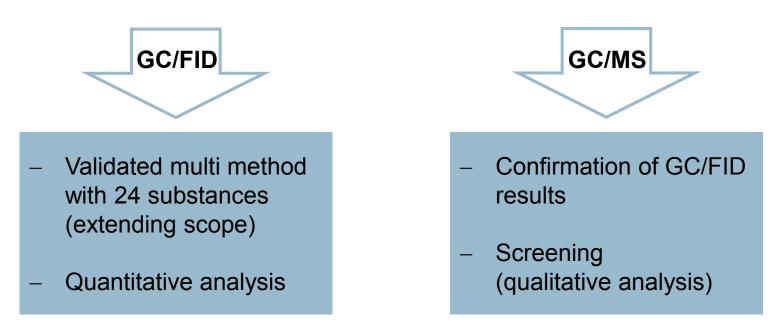
Analyte	Split	Temperature programme [°C]	FID temp. [°C]	Run time [min]
Active substances	50:1	35 (0.5 min), ramp 35 °C/min, 280 (5 min)	250	12.5
Co-formulants	20:1	45 (1 min), ramp 10 °C/min, 200 (1 min), ramp 10 °C/min, 280 (5 min)	300	30.5

- Impurities and foreign substances are analysed according to co-formulants
- if necessary: starting point for further method development

Analysis of active substances and co-formulants Validation data

- Methods using the standardised conditions:
 - 6 for active substances (ca. 38 %) (EC and WG formulation)
 - 1 multi method for co-formulants containing 24 analytes (SC formulation)

	a.s.	co-formulants	
Recovery [%]	97.7 – 101.9	97.0 - 100.6	comply with EU SANCO/ 3030
Repeatability [RSD %]	0.15 – 2.18	0.14 – 2.57	
Linearity	≥ 0.99	≥ 0.98	


→ Conditions suitable for analysis of ppp

Bundesamt für Verbraucherschutz und Lebensmittelsicherheit

Co-formulants, foreign substances and screening purposes

Inhouse multi methods

- General conditions are identical (solvent, injector conditions, temp. programming, ...)
- Some conditions differ to fit for MS analysis (e.g. gas flows)

Bundesamt für Verbraucherschutz und Lebensmittelsicherheit

Co-formulants, foreign substances and screening purposes

Inhouse multi methods

Classical multi method

to quantify 24 substances simultaneously

According to "new" definition

because conditions are used as starting point for method development / optimisation

standardised or multi methods...

- Helpful tools to make the work in formulation laboratories more efficient
- Reduce the number of single-analyte methods by using standardised conditions
- A standardised / multi method would be helpful for harmonisation of market control

Nevertheless:

Access to methods supplied during authorisation is recommended for market control because of important information / advice for determining certain analytes in specific formulations types.

Thank you very much for your attention!

Kontakt:

Kristina Dürkop Federal Office of Consumer Protection and Food Safety

Email to: kristina.duerkop@bvl.bund.de

