ASSESSMENT OF PERFORMANCE OF LABORATORIES IN DETERMINING ACTIVE INGREDIENT CONTENT IN DIFFERENT FORMULATIONS.

ANGELA SANTILIO

National Institute of Health – Department of Environmental and Health V.Ie Regina Elena , 299 00161 Rome(IT)

email: angela.santilio@iss.it

TOPICS

INTRODUCTION ORGANISATION RESULTS CONCLUSION

INTRODUCTION

Analysis of pesticides is a challenge for analysts because they need to monitor specification of pesticide formulations available for farmer agricultural applications.

The monitoring programs are very important to check the quality of pesticide formulations and to control the spurious product available in the marketplace. As consequence, the assessment of performance of laboratories by regular participation in the proficiency test (PT) program is very important component of laboratory quality assurance.

The PT participation provide independent evidence that laboratory quality procedure, test methods and other operation are under control.

INTRODUCTION

During the 2018 and 2019, the National Institute of Health organized two PT on the determination of active ingredient in commercial plant protection products.

The activity planned in the framework of the collaboration with Health Ministry and National Institute of Health.

Due to the national monitoring program are in compliance with the European monitoring program it useful to enlarge the invitation to European member state laboratories that works in this issue.

INTRODUCTION

During 2018 and 2019, seven samples were analysed

2018 - three different commercial products were obtained from DuPont Manufacturer

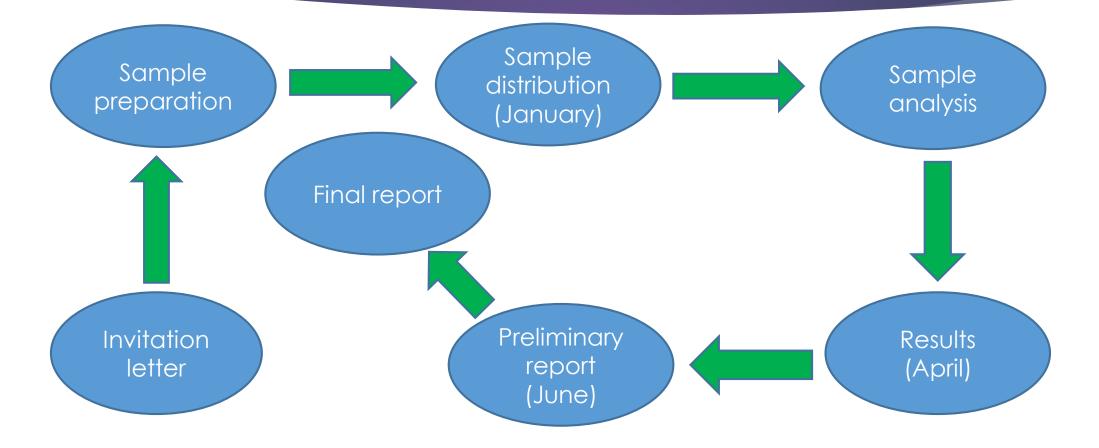
The products contain:

- Cymoxanyl 20% (WP)
- Methomyl 20% (SL)
- Oxamyl 5% (GR)

2019 - four different commercial products were obtained from Adama, Newpharm and Syngenta

The products contain:

- Dimethomorph 6% (WP)
- Amisulbron 5% (WG)
- Propiconazole 25% (EC)
- Pirimiphos-methyl 5% (Liquid)



The Italian National Institute of Health laboratory is not accreditate as promoter for PTs. Anyway, we follow the guidelines:

- * ISO/IEC 17043:2010 (E)
- * ISO 13528: 2015
- Protocol of Association of American Pesticide control officials (AAPCO)

ORGANISATION

ORGANISATION

All relevant Italian laboratories and European Laboratories were invited to partecipate in the Italian Proficiency test on PPPs.

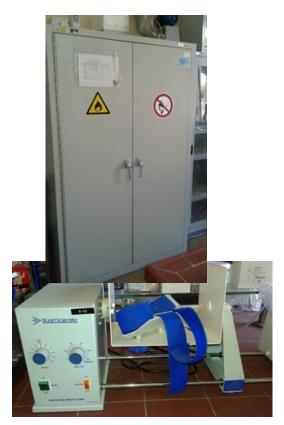
The invitation letter was send to 9 Italian laboratories and to 17 European laboratories.

All laboratories agreed to participate in the test.

The shipment of the test items planned to start on January.

Submission of results and method information done by April.

ORGANISATION


European Countries were: Austria Belgium (2 lab) Bulgaria **Czech Republic** Denmarks Finland France Germany Greece Hungary Italy (9 lab) Ireland Poland Romania Slovakia **United Kingdom**

ORGANISATION

Before the shipment:

- all samples were stored at ambient temperature (25°C)
- each sample was mixed, mechanically
- nothing was added to the samples
- ✓ homogeneity and stability tests were performed

ORGANISATION

- The samples were shipped by corrier and at the same time a form was sent to the laboratories (it includes results and information on the analytical methods)
- The results were elaborate and statistically evaluate

RESULTS

OMOGENEITY TEST

Ten bottle were randonly chosen and analysed in duplicate in two different days.

Considering that sigma PT is unknown the statistical significant difference between PT items used was evaluated with the analysis of variance T-Test at α =0.05, if the data series are more than two will need the Fisher Test. The T-test shows a significativity level (P) higher than 0.05 for each active substance. It is possible to say the samples are not different one each other, they are homogeneity.

Card Car

RESULTS

	Cymc	oxanil	Meth	omyl	Oxa	myl	
	a*	b*	a*	b*	a*	b*	
1	19,36	19,41	18,86	19,51	4,64	5,05	
2	19,14	19,36	18,50	18,75	4,86	4,79	
3	19,08	19,49	19,11	18,82	4,70	5,01	
4	19,34	19,27	19,02	19,63	5,38	4,96	
5	19,27	19,28	18,96	19,81	4,91	5,29	
6	19,28	18,50	17,06	17,69	5,28	4,98	
7	19,49	19,32	18,54	18,81	5,40	5,07	
8	19,37	19,47	19,23	18,60	5,53	5,11	
9	18,96	18,96	18,62	19,31	5,08	5,34	
10	19,32	19,44	18,60	19,57	5,13	5,20	
Mean	19,	,26	18,	,85	5,09		
Std Dev.	0,2	0,236		544	0,240		
t**	0,9	0,905		27	0,100		
P***	0,3	77	0,1	.71	0,922		
Homogeinity	YE	ES	YE	ES	YI	ES	

*a,b = replicates of the same sample
t**= T of Student Test
P***=significativity level

COCC.

RESULTS

	Amisu	lbrom	Dimeth	omorph	Pirimiph	os-Methyl	Propico	nazole	
	a*	b*	a*	b*	a*	b*	a*	b*	
1	5,23	5,24	6,48	6,58	5,02	5,19	25,5	24,3	
2	5,19	5,23	6,66	6,59	5,03	5,18	23,2	22,2	
3	5,12	5,22	6,52	6,39	5,11	5,60	22,2	23,5	
4	5,24	5,22	6,60	6,52	4,95	5,02	23,3	23,9	
5	5,18	5,24	6,48	6,49	5,23	5,49	24,6	24,5	
6	5,18	5,17	6,53	6,41	5,38	5,16	25,1	24,8	
7	5,27	5,14	6,44	6,55	5,31	5,43	23,6	24,9	
8	5,27	5,06	6,40	6,40	5,00	5,08	24,8	25,1	
9	5,14	5,23	6,30	6,43	4,91	5,09	25,2	24,8	
10	5,24	5,24	6,57	6,60	5,13	5,12	24,8	25,4	
Mean	5,2	20	6,	50	5	5,17		24,3	
Std Dev.	0,0	0,055)92	0,	,186	0,9	994	
t**	0,2	0,281		046	1,	,618	0,26		
P***	0,7	0,782		0,963		0,123		798	
Homogeinity	YE	ES	YI	ES	١	/ES	YES		

*a,b = replicates of the same sample
t**= T of Student Test
P***=significativity level

STABILITY TEST

The stability test was performed using two bottles randomly choosen, which were analysed in duplicate in two occasions and each occasion twice.

- **Day 1** at the begining of the PT.
- **Day 2** at the end of the PT.

Stability test was judged acceptable as the percentage difference of concentration, for each active substance was found less than 10%. Any significant decrease in the pesticide concentration was showed during the PT.

The following tables shows the results for each substances

IS CAR

RESULTS

СҮМОХА	NIL 18 th	Januar	У	CYMOXANIL 3 rd May								
	da	y 1	da	y 2	/ 2 da			y 1 day 2				
	inj 1	1 inj 2 inj 1 i				inj 1	inj 2	inj 1	inj 2			
Sample 1	19,8	20,0	19,7	19,6	Sample 1	19,2	19,0	20,0	19,8			
Sample 2	19,9	19,8	19,8	19,6	Sample 2	18,9	19,3	19,9	19,9			
Mean	19	9,9	19	9,7	Mean	19),1	19	,9			
Std Dev.	0,10 0,				Std Dev.	0,	0,18		08			
Mean of 2 days		19	,8		Mean of 2 days	19),5					
Std Dev. Of 2 days		0,	14		Std Dev. Of 2 days		0,	57				
Deviation (ref	1st Ana	lysis %)		-1,39								
[(M2-M1)	/M1]*1	00										
Deviation (ref to th	e decla	red labe	el %)	-1,81								
[(SM-20)	[(SM-20)/20]*100											
Stabiliy Mean (SN	/)		19,6	Declared Label 20								
Stability Std Dev	/		0,19	CV % 0,99								

RESULTS

METH	OMYL 1	8 th Jan			METH	OMYL 3	rd May				
	da	y 1	da	y 2	/ 2			day 2			
	inj 1	inj 2 inj 1 in		inj 2		inj 1	inj 2	inj 1	inj 2		
Sample 1	19,1	19,1	19,2	19,3	Sample 1	18,5	18,9	19,3	19,0		
Sample 2	19	18,9	19,4	19,2	Sample 2	18,8	18,6	19,0	19,2		
Mean 19,0 19,					Mean	18	3,7	19	9,1		
Std Dev.	0,	10	0,	10	Std Dev.	0,	18	0,15			
Mean of 2 days		19),2		Mean of 2 days		18,9				
Std Dev. Of 2 days		0,	18		Std Dev. Of 2 days		0,	30			
Deviation (ref	1st Ana	lysis %)			-1,	26					
[(M2-M1),	/M1]*1	00									
Deviation (ref to th	e declai	red labe	el %)	-4,84							
[(SM-20)/20]*100											
Stabiliy Mean (SN	19,0	Declared Label 20				20					
Stability Std Dev	v		0,17		CV %			0,88			

C.C.C.

RESULTS

ΟΧΑΙ	MYL 18 ^t	^h Jan			OXAMYL 3 rd May						
	da	y 1	da	y 2	/ 2 0			da	day 2		
	inj 1	inj 2	inj 1	inj 2		inj 1	inj 2	inj 1	inj 2		
Sample 1	5,20	5,20 5,19 5,		5,32	Sample 1	5,33	5,31	5,29	5,31		
Sample 2	5,43	5,43 5,40 5,30		5,33	Sample 2	5,30	5,34	5,30	5,31		
Mean	Mean 5,31 5,3				Mean	5,	32	5,	30		
Std Dev.	ev. 0,13 0,			01	Std Dev.	0,	02	0,01			
Mean of 2 days		5,	31		Mean of 2 days 5,31			31			
Std Dev. Of 2 days		0,	01		Std Dev. Of 2 days	0,01					
Deviation (ref	1st Ana	lysis %)			0,02						
[(M2-M1)	/M1]*1	00									
Deviation (ref to th	e declai	red labe	el %)	6,21							
[(SM-5),	[(SM-5)/5]*100										
Stabiliy Mean (SN	5,31	Declared Label 5				5					
Stability Std Dev	v		0,00		CV %			0,02			

RESULTS

А	MISULBRC	OM Decem	ber 2018		AMISULBROM June 2019					
	da	y 1	da	ay 2		day 1		day 2		
	inj 1	inj 2	inj 1	inj 2		inj 1	inj 2	inj 1	inj 2	
Sample 1	5,03	5,03	5,53	5,56	Sample 1	4,57	4,59	5,64	5,64	
Sample 2	5,29	5,28	5,1	5,07	Sample 2	4,58	4,58	5,1	5,08	
Mean	5,	16	5	,32	Mean	4,	58	5,3	365	
Std Dev.	0,1	147	0,	266	Std Dev.	0,0	008	0,3	318	
Mean of 2 days		5	,24		Mean of 2 days		4,97			
Std Dev. Of 2 days		0,	207		Std Dev. Of 2 days		0,2	163		
Deviat	ion (ref 1st	t Analysis %	%)			3,054				
[(M2-M1)/N	/11]*100				5,054				
Deviation (ref to the o	declared la	bel %)			2 088				
	[(SM-5)/5]*100			2,088					
Stabiliy Mea	ın (SM)		5,10		Declared La	pel		5,00		
Stability St	d Dev		0,185		CV % 3,621					

C.C.M

RESULTS

DI	METOMOR	PH Nov 20	18		DIMETHOMORPH June 2019					
	da	y 1	da	y 2	/ 2			ay 1 day 2		
	inj 1	inj 2	inj 1	inj 2		inj 1	inj 2	inj 1	inj 2	
Sample 1	6,35	6,3	5,84	5,86	Sample 1	6,23	6,14	6,33	6,15	
Sample 2	6,42	6,42 6,4 6,43		6,43	Sample 2	6,29	6,56	6,26	6,09	
Mean	6,	37	6,	14	Mean	6,	31	6,	21	
Std Dev.	0,0)54	0,3	335	Std Dev.	0,181 0,			L08	
Mean of 2 days		6,	25		Mean of 2 days		6,	26		
Std Dev. Of 2 days		0,1	194		Std Dev. Of 2 days		0,1	144		
Deviation	ı (ref 1st Aı	nalysis %)		2.57						
[(M2	2-M1)/M1]	*100				-3,57				
Deviation (ref	to the dec	lared labe	l %)			4.25				
[(S	6M-6)/6]*1	00				4,25				
Stabiliy Mean ((SM)		6,26		Declared Label 6,00					
Stability Std D)ev		0,169		CV % 2,71					

C.C.M

RESULTS

PIRI	MIPHOS METH	YL November	2018		PIRI	ИІРНОЅ М	ETHYL June	e 2019		
	day	y 1	da	iy 2		day 1		day 2		
	inj 1	inj 2	inj 2 inj 1			inj 1	inj 2	inj 1	inj 2	
Sample 1	4,92	5,21	5,56	5,2	Sample 1	3,67	4,1	4,26	3,54	
Sample 2	5,04	4,9	5,07	5,44	Sample 2	3,60		4,60	4,18	
Mean	5,0	02	5,	32	Mean	3,8	385	4,	15	
Std Dev.	0,1	223	Std Dev.	0,271		0,443				
Mean of 2 days		5,17			Mean of 2 days		4,02			
Std Dev. Of 2 days		0,183			Std Dev. Of 2 days		0,357			
Devia	tion (ref 1st Ar	nalysis %)		E 09						
[(M2-M1)/M1]	*100			5,98					
Deviation	(ref to the dec	lared label %)				0 175				
	[(SM-5)/5]*1	00				-8,175				
Stabiliy Mean (SM) 4,59					Declared Label 5			5		
Stability Sto	d Dev		0,123		CV % 2,68					

C.C.M

RESULTS

PROPI	CONAZOLE	Decembei	r 2018	•	PRO	PICONAZO	LE June 20	19	
	da	y 1	da	y 2		day 1		day 2	
	inj 1	inj 2	inj 1	nj 1 inj 2 ir		inj 1	inj 2	inj 1	inj 2
Sample 1	23,4	23,5	23,3	23,2	Sample 1	22,2	21,6	27,0	26,6
Sample 2	23,2	22,3	22,7	22,5	Sample 2	25,3	25,4	25,3	25,6
Mean	23	,10	22	,93	Mean	23	,63	26	,13
Std Dev.	0,5),548 0,386			Std Dev.	2,007		0,806	
Mean of 2 days		23	,01		Mean of 2 days	24,88			
Std Dev. Of 2 days		0,4	467		Std Dev. Of 2 days	1,406			
Deviation	(ref 1st An	alysis %)				0.759			
[(M2	-M1)/M1]*	100		-0,758					
Deviation (ref	to the decl	ared label 9	%)			4 225			
[(SN	1-25)/25]*1	.00				-4,225			
Stabiliy Mean (S	5M)	vl) 23,94			Declared Label 25				
Stability Std D	ev		0,937		CV %			3,912	

RESULTS

The robust estimate of the standard deviation used was the MAD_E value.

To obtain the MAD_E,

Calculate Median Absolute Deviation (MAD) from the sample median:

```
MAD = median (|X_{i} - median (Xi)|_{i=1,2...n})
```

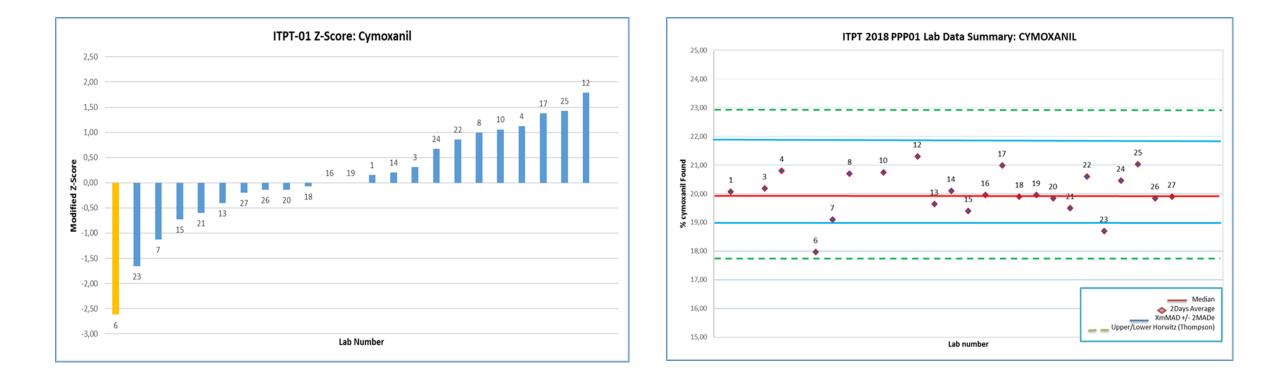
Calculate MAD_E:

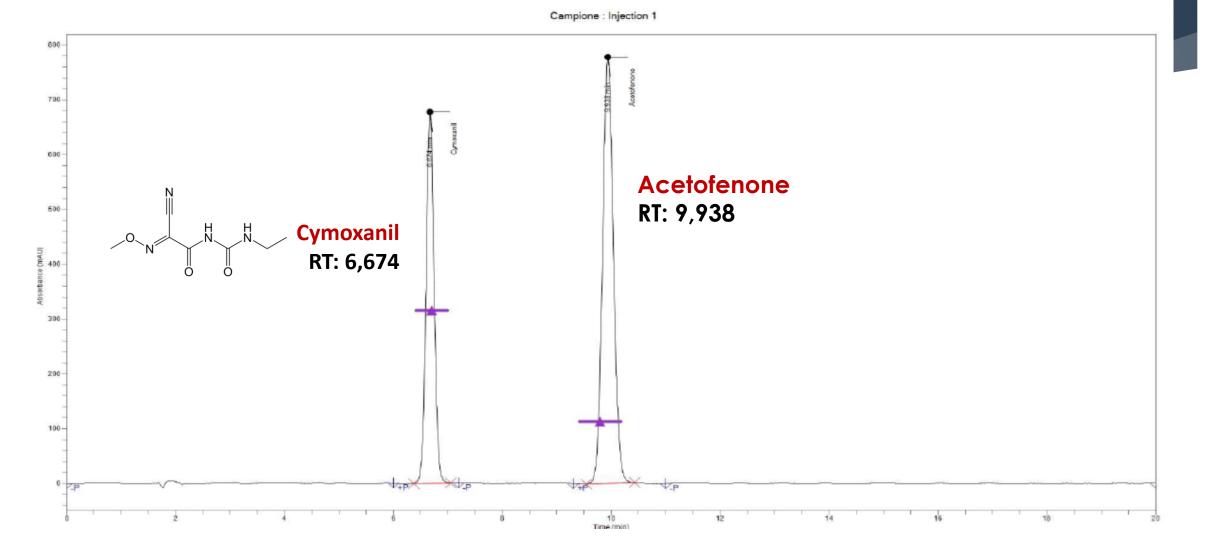
 $MAD_{E} = K \times MAD$

For normally distributed data, K= 1,483.

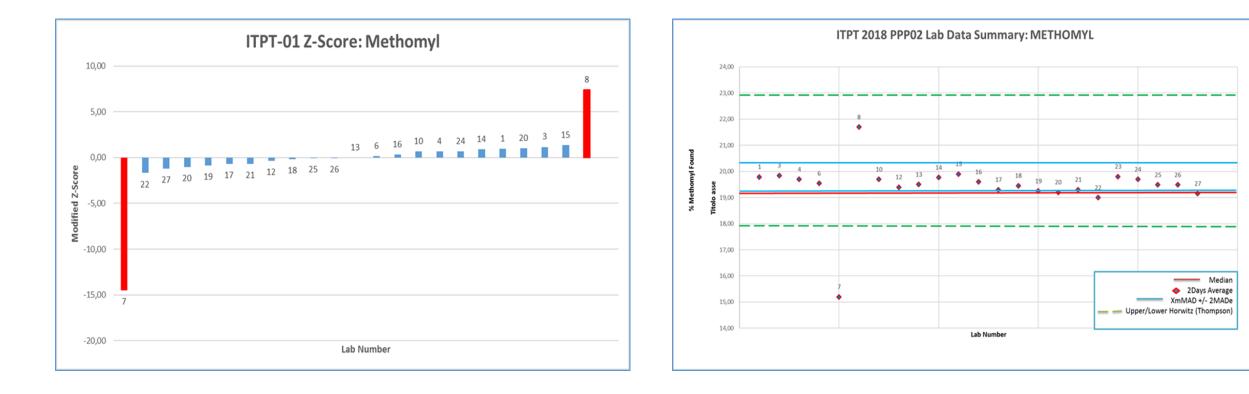
 $MAD_{E} = 1,483 \times MAD$

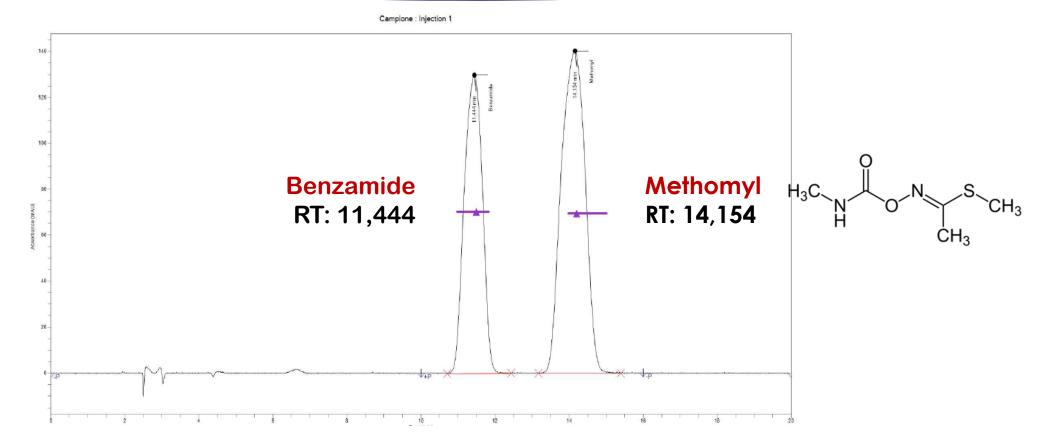
Calculation of Modified Z-scores

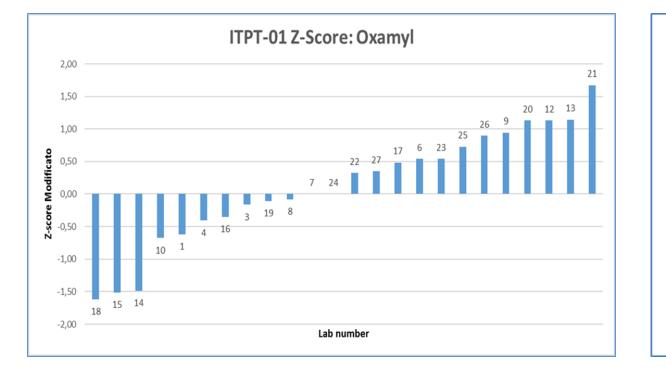

Modified Z-scores (Zi) for each laboratory were calculated as:

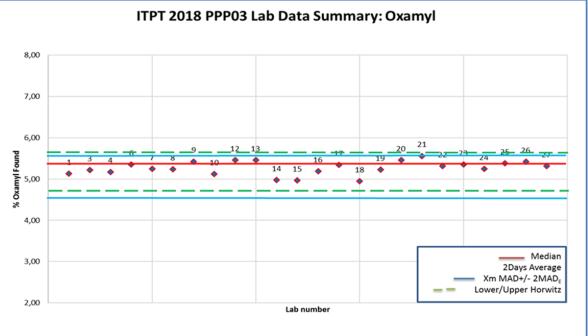

Zi = 0,6745 x (Xi – *median*) / MAD

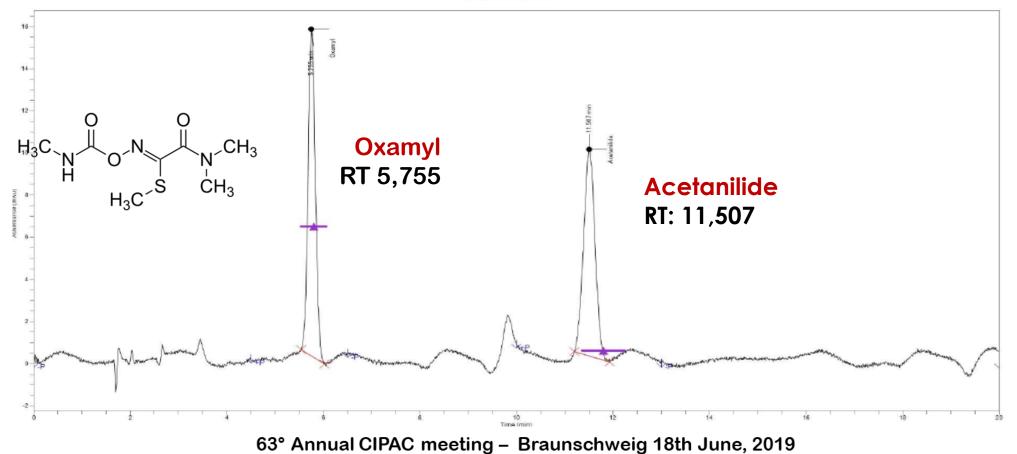
Z values falling outside the range of $-3,5 \le Zi \le 3,5$ were marked as outliers.

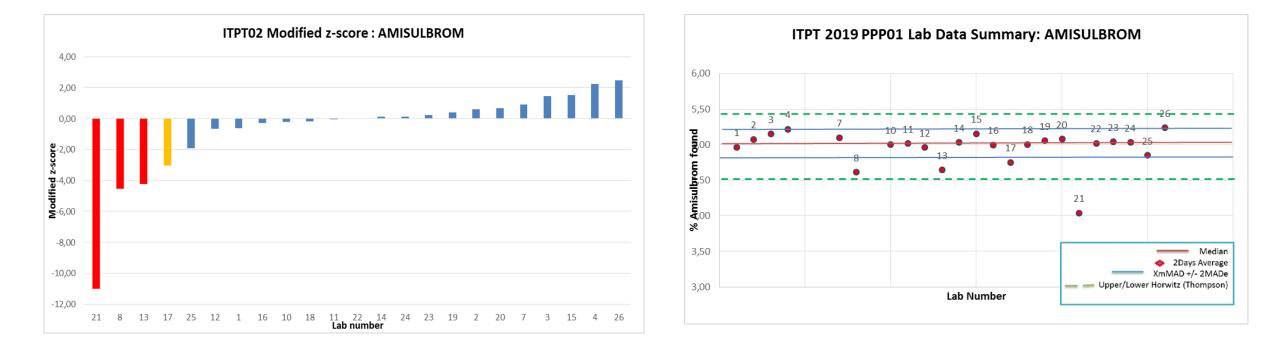

RESULTS




RESULTS

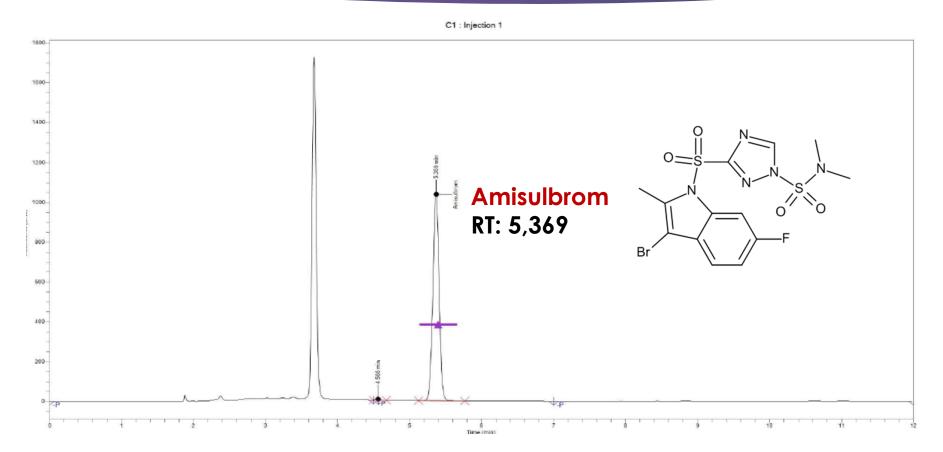


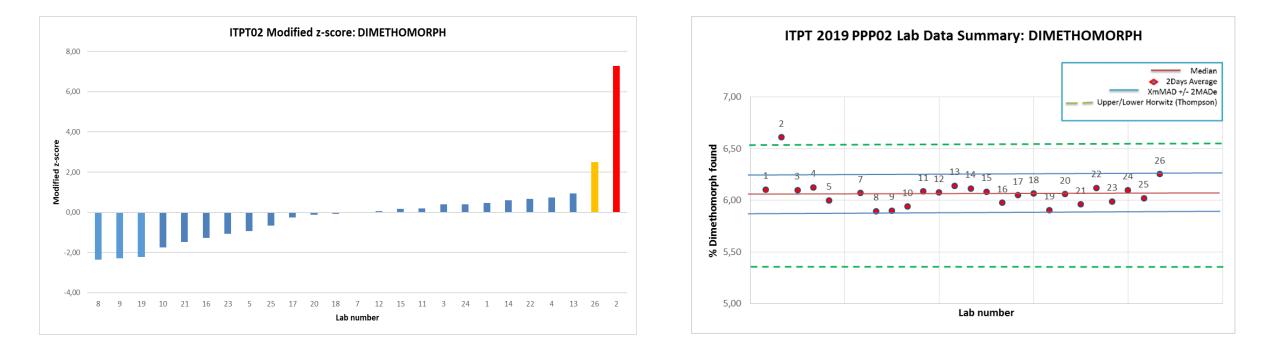

RESULTS

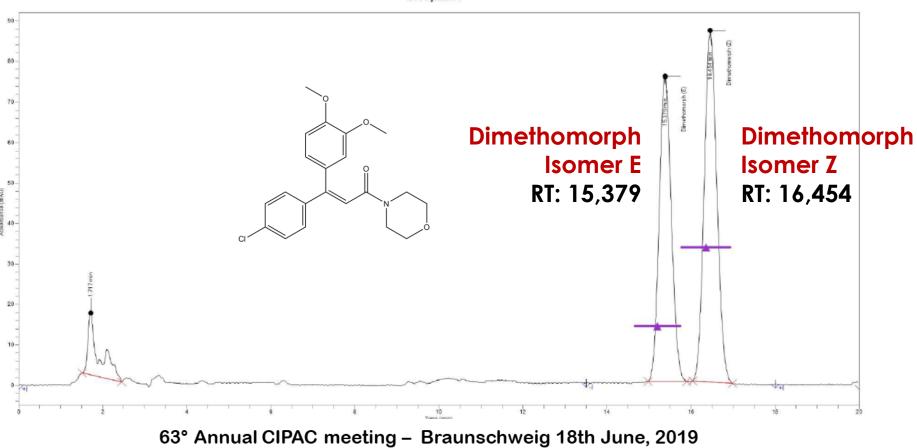


RESULTS

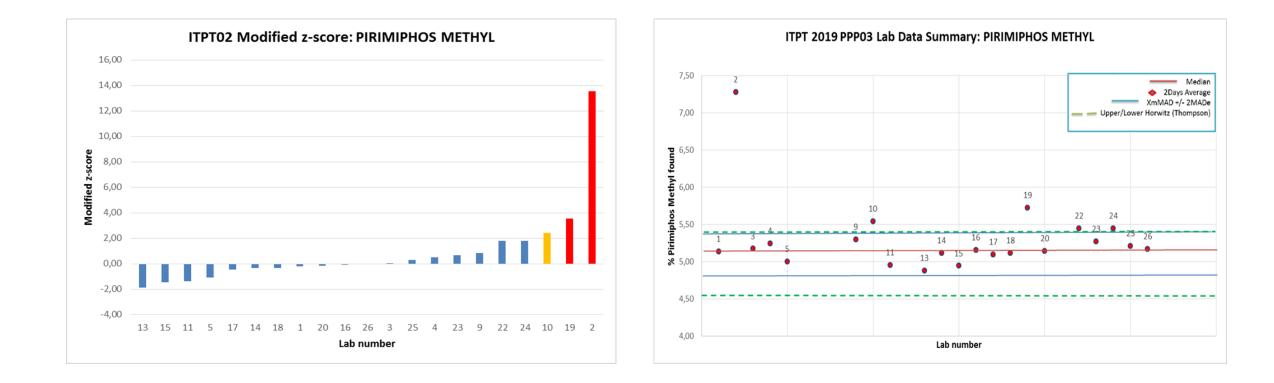
Campione : Injection 1



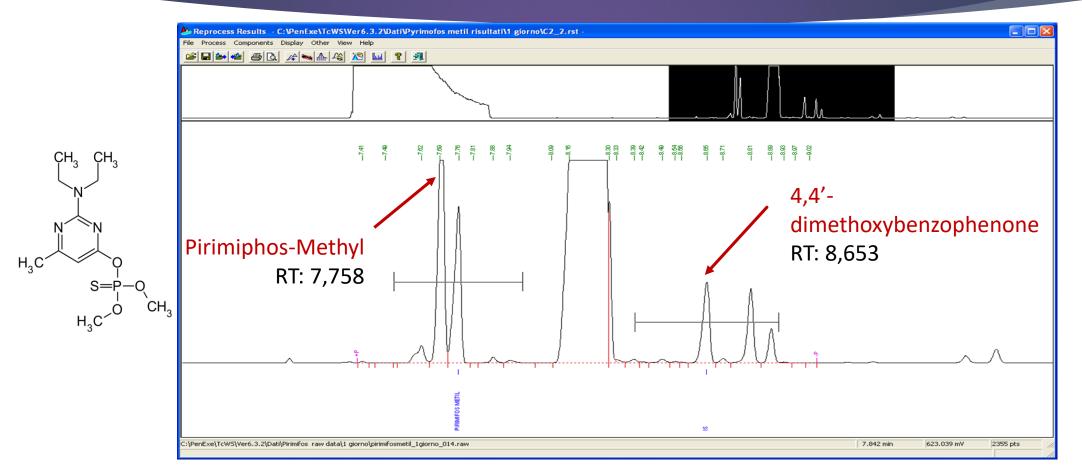



RESULTS

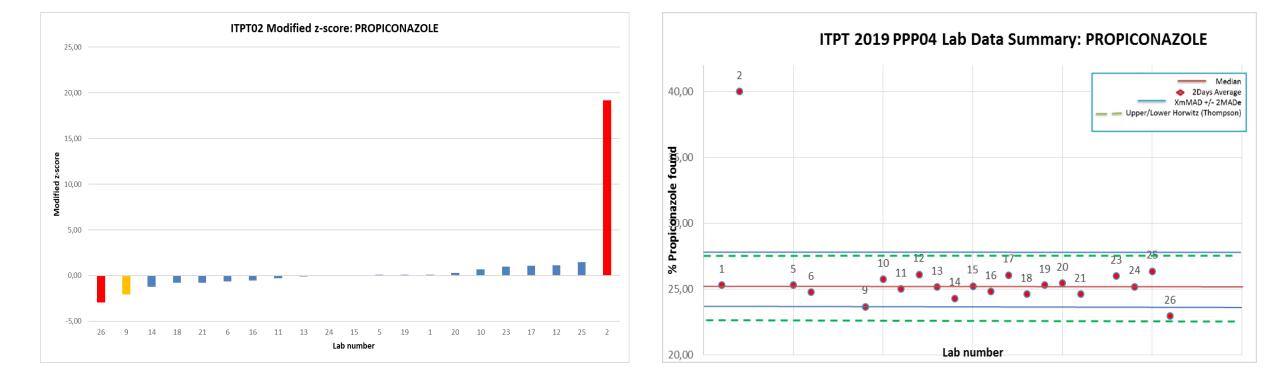
RESULTS

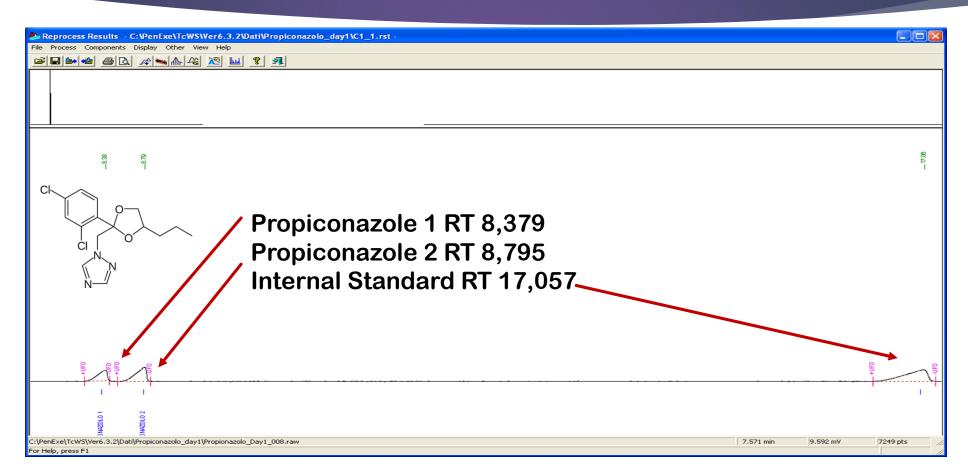


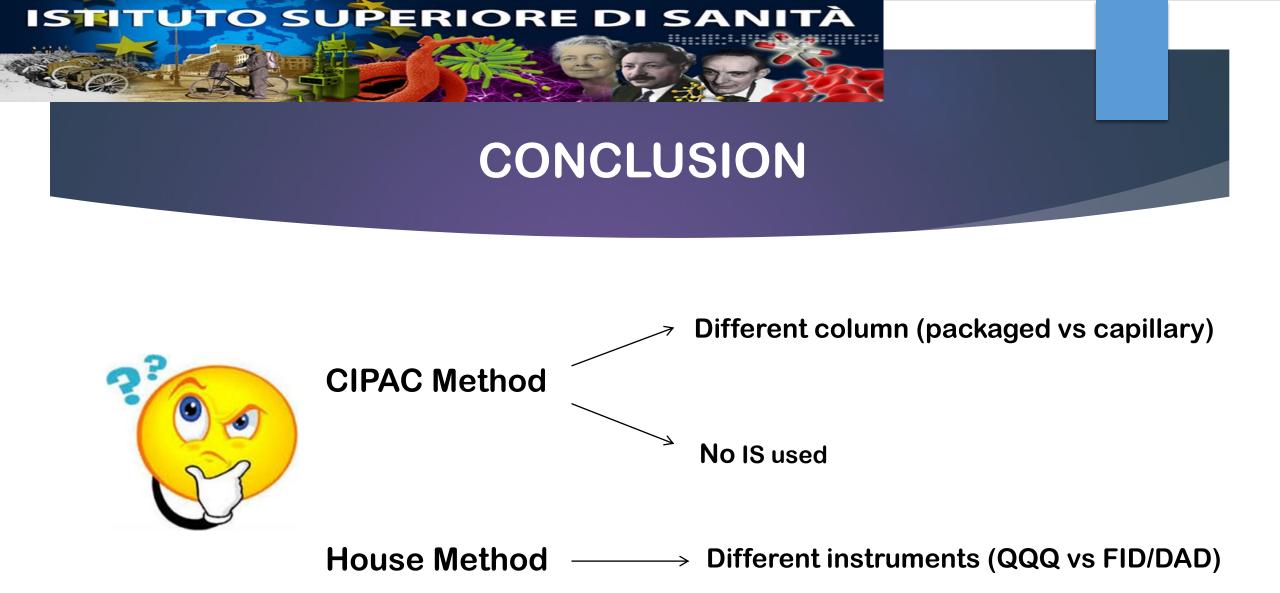
RESULTS



S1 : Injection 1


RESULTS


RESULTS



RESULTS

RESULTS

Method	Z-score values										
	Amisulbron	Cymoxanil	Dimethomorph	Methomy	Oxamyl	Pirimiphos methyl	Propiconazole				
In-house	(-4.22) – 1.46	(-2.62) - +1.79	(-2.23) -7.28	(-14.6) – 7.34	(-1.62) – 1.13	13.55 - (-1.86)	19.92 - (-1.26)				
				\sim							
CIPAC	(-11.02) – 2.47	-0.86 - 1.43	(-2.36) – 2.50	(-0.11) - 7.34	(-1.48) – 1.14	0.84 - (-1.38)	1.51 – (• 3.08)				
Manufacturer	(-0.06) – 0.00	- 1.65		(-1.76) – 0.89	(-0.67) – 1.67	0.67	1.01				

- ► The outcome of the ITPT PPP2018 and PPP2019 is satisfactory.
- The performance of the laboratories expressed in terms of modified zscore were satisfactory by almost all participants for all substances.
- Outlier were obtained for Methomyl (2 laboratories); Amisulbron (3 laboratories); Dimethomorph (1 laboratory); Pirimiphos methyl (1 laboratory); Propiconazole (2 laboratories). These laboratories should analyzed the reason of their results.

CONCLUSION

