### **METOFLUTHRIN**

### 993

$$H_3CO$$
 $F$ 
 $H_3C$ 
 $CH_3$ 

ISO common name

Metofluthrin

Chemical name

2,3,5,6-tetrafluoro-4-(methoxymethyl)benzyl

(1RS,3RS;1RS,3SR)-2,2-dimethyl-3-[(EZ)-prop-1-

enyl]cyclopropanecarboxylate (IUPAC);

[2,3,5,6-tetrafluoro-4-(methoxymethyl)phenyl]

methyl 2,2-dimethyl-3-(1-propen-1-yl)

cyclopropanecarboxylate (CA)

CAS No.

240494-70-6

Empirical formula

 $C_{18}H_{20}F_4O_3$ 

RMM

360.3

Boiling point

340.36°C

v.p.

8.969 x 10<sup>-4</sup> Pa (20°C)

Solubility

In water, 0.441  $\mu$ g/l; acetone, >250 g/l;

p-xylene, >250 g/l; methanol, >250 g/l; ethyl acetate, >250 g/l; 1,2-dichloroethane, >250 g/l;

n-heptane, >250 g/l

Description

Very pale yellow to pale yellow clear liquid

*Note:* Metofluthrin is the ISO common name for the mixture of eight isomers. The isomers are designated as follows:

RTZ, STZ, RCE, SCE, RCE, SCE, RTE and STE isomers

# METOFLUTHRIN 993/TC/m/-

1 Sampling. Take at least 100 g.

### 2 Identity tests

- **2.1 GLC.** Use the GLC method below. The relative retention time of metofluthrin (peak A) with respect to the internal standard for the sample solution should not deviate by more than 1% from that for the calibration solution.
- 2.2 HPLC. Under investigation

### 3 Metofluthrin

OUTLINE OF METHOD Metofluthrin is determined by capillary gas chromatography using flame ionisation detection and fluoranthene as internal standard.

### **REAGENTS**

Acetone

Metofluthrin standard of known purity. Store refrigerated.

Fluoranthene internal standard. Must not show peaks with the same retention times as metofluthrin (peaks A and B).

Internal standard solution. Dissolve fluoranthene (0.6 g) in acetone (100 mL). Ensure that a sufficient quantity of this solution is prepared for all samples and calibration standards to be analysed.

Calibration solution. Weigh in duplicate (to the nearest 0.1 mg) 90 to 110 mg (s mg) of metofluthrin standard into separate vials (50 ml). Add by pipette internal standard solution (10.0 ml) and acetone (about 30 ml). Dissolve the standard and mix well (Solutions C<sub>A</sub> and C<sub>B</sub>).

### **APPARATUS**

Gas chromatograph equipped with a split/splitless injection and a flame ionisation detector.

Capillary column fused silica, 30 m × 0.25 mm (i.d.), film thickness: 0.25 μm, coated with crosslinked 5% phenyl polysiloxane 95% dimethyl polysiloxane (DB-5 or equivalent)

Electric integrator or data system

### **PROCEDURE**

(a) Gas chromatographic conditions (typical):

Column fused silica,  $30 \text{ m} \times 0.25 \text{ mm}$ , film thickness:

0.25 μm, coated with crosslinked 5% phenyl polysiloxane 95% dimethyl polysiloxane

(DB-5 or equivalent)

Injection system

Injector split injection

Split flow approximately 50 ml/min

Injection volume 1 µl

Detector flame ionisation

**Temperatures** 

Column oven 160°C Injector 300°C Detector 325°C

Carrier gas helium, 30 cm/sec

Retention times metofluthrin:

peak A: about 26 min peak B: about 27 min fluoranthene: about 29 min

*Note*: peak A consists of the *RTZ*, *STZ*, *RCE* and *SCE* isomers peak B consists of the *RCE*, *SCE*, *RTE* and *STE* isomers

- (b) Linearity check. Check the linearity of the detector response by injecting 1  $\mu$ l of solutions with metofluthrin concentrations 0.5, 1 and 2 times that of the calibration solution before conducting analysis.
- (c) System equilibration. Prepare two calibration solutions. Inject 1 µl portions of the first one until the response factors obtained for two consecutive injections differ by less than 1.0%. Then inject a 1 µl portion of the second solution. The response factor for this solution should not deviate by more than 1.0% from that for the first calibration solution, otherwise prepare new calibration solutions.
- (d) Preparation of sample solution. Weigh in duplicate (to the nearest 0.1 mg) sufficient sample to contain about 100 mg (w mg) of metofluthrin into separate vials (50 ml). Add by pipette internal standard solution (10.0 ml) and acetone (about 30 ml). Dissolve the standard and mix well (Solutions  $S_A$  and  $S_B$ ).
- (e) Determination. Inject in duplicate 1 µl portions of each sample solution bracketing them by injections of the calibration solutions as

follows; calibration solution  $C_A$ , sample solution  $S_A$ , sample solution  $S_A$ , calibration solution  $C_B$ , sample solution  $S_B$ , sample solution  $S_B$ , calibration solution  $C_A$ , and so on. Measure the relevant peak areas.

(f) Calculation. Calculate the mean value of each pair of response factors bracketing the two injections of a sample and use this value for calculating the metofluthrin contents of the bracketed sample injections.

$$f_i = \frac{I_r \times s \times P}{H_S}$$

Metofluthrin content = 
$$\frac{f \times H_{w}}{I_{q} \times w}$$
 (g/kg)

where:

 $f_i$  = individual response factor

f = mean response factor

 $H_s$  = total peak area of metofluthrin (peak A+B) in the calibration solution

 $H_{w}$ = total peak area of metofluthrin (peak A+B) in the sample solution

 $I_r$  = peak area of internal standard in the calibration solution

 $I_q$  = peak area of internal standard in the sample solution

s' = mass of metofluthrin standard in the calibration solution (mg)

w = mass of sample taken (mg)

P = purity of metofluthrin standard (g/kg)

**Repeatability r** = 3.7 g/kg at 967 g/kg active ingredient content **Reproducibility R** = 5.3 g/kg at 994 g/kg active ingredient content

# METOFLUTHRIN EMULSIONS, OIL IN WATER 993/EW/m/-

1 Sampling. Take at least 1L.

# 2 Identity tests

**2.1 GLC.** Use the GLC method below. The relative retention time of metofluthrin (peak A) with respect to the internal standard for the sample solution should not deviate by more than 1% from that for the calibration solution.

### 2.2 HPLC. Under investigation

# 3 METOFLUTHRIN. As for 993/TC/m/3 except:

#### REAGENTS

Sodium chloride

Internal standard solution. Dissolve fluoranthene (30 mg) in acetone (100 mL). Ensure that a sufficient quantity of this solution is prepared for all samples and calibration standards to be analysed.

Calibration solution. Weigh in duplicate (to the nearest 0.1 mg) 90 to 110 mg (s mg) of metofluthrin standard into separate volumetric flasks (50 ml). Dissolve and make up to volume with acetone. Transfer by pipette 5.0 ml of these solutions into separate volumetric flasks (20 ml) and make up to volume with acetone. Transfer by pipette 5.0 ml of these solutions into separate vials (20 ml), add by pipette internal standard solution (5.0 ml) and mix well (Solutions C<sub>A</sub> and C<sub>B</sub>).

### **APPARATUS**

Ultrasonic bath

### **PROCEDURE**

(a) Gas chromatographic conditions (typical)

Injection system

Split flow

approximately 10 ml/min

Injection volume

 $2 \mu l$ 

**Temperatures** 

Column oven

160°C (use a short temperature program to remove formulation components, if necessary)

- (b) Linearity check. Check the linearity of the detector response by injecting 2  $\mu$ l of solutions with metofluthrin concentrations 0.5, 1 and 2 times that of the calibration solution before conducting analysis.
- (c) System equilibration. Prepare two calibration solutions. Inject 2 µl portions of the first one until the response factors obtained for two consecutive injections differ by less than 2.0%. Then inject a 2 µl portion of the second solution. The response factor for this solution should not deviate by more than 2.0% from that for the first calibration solution, otherwise prepare new calibration solutions.

- (d) Preparation of sample solution. Homogenize the sample by vigorous shaking. Weigh in duplicate (to the nearest 0.1 mg) sufficient sample to contain about 2.5 mg (w mg) of metofluthrin into separate vials (20 ml). Add by pipette internal standard solution (5.0 ml) and acetone (about 5 ml), and place the vials in an ultrasonic bath for 5 min. Add about 1 g of sodium chloride and mix thoroughly. Filter a portion of each sample solution through a 0.45  $\mu$ m filter prior to analysis (Solutions  $S_A$  and  $S_B$ ).
- (e) Determination. Inject in duplicate 2  $\mu$ l portions of each sample solution bracketing them by injections of the calibration solutions as follows; calibration solution  $C_A$ , sample solution  $S_A$ , calibration solution  $C_B$ , sample solution  $S_B$ , sample solution  $S_B$ , calibration solution  $C_A$ , and so on. Measure the relevant peak areas.
- (f) Calculation. Calculate the mean value of each pair of response factors bracketing the two injections of a sample and use this value for calculating the metofluthrin contents of the bracketed sample injections.

$$f_i = \frac{I_r \times s \times P}{H_S}$$

Metofluthrin content = 
$$\frac{f \times H_w}{I_q \times w} \times \frac{1}{40} (g/kg)$$

**Repeatability r** = 0.032 g/kg at 0.962 g/kg active ingredient content **Reproducibility R** = 0.046 g/kg at 0.962 g/kg active ingredient content

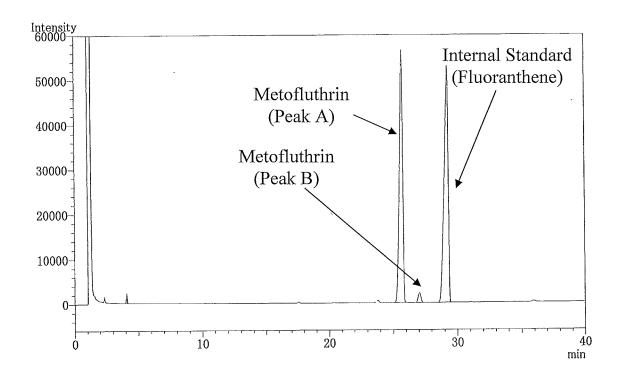



Figure 1 Example of Gas Chromatogram of Metofluthrin TC

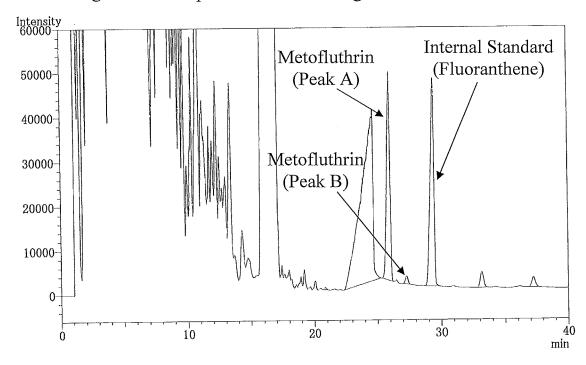



Figure 2 Example of Gas Chromatogram of Metofluthrin EW